scenario-non-kd-pre-ner-half-mdeberta_data-univner_full66
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1673
- Precision: 0.6897
- Recall: 0.7416
- F1: 0.7147
- Accuracy: 0.9712
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 66
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3169 | 0.29 | 500 | 0.2023 | 0.2870 | 0.3272 | 0.3058 | 0.9356 |
0.1897 | 0.58 | 1000 | 0.1647 | 0.4142 | 0.4800 | 0.4447 | 0.9459 |
0.1557 | 0.87 | 1500 | 0.1464 | 0.4614 | 0.5513 | 0.5023 | 0.9516 |
0.1336 | 1.16 | 2000 | 0.1368 | 0.4959 | 0.5706 | 0.5307 | 0.9543 |
0.117 | 1.46 | 2500 | 0.1359 | 0.5037 | 0.6188 | 0.5554 | 0.9541 |
0.1133 | 1.75 | 3000 | 0.1230 | 0.5571 | 0.6091 | 0.5820 | 0.9601 |
0.1062 | 2.04 | 3500 | 0.1214 | 0.5613 | 0.6682 | 0.6101 | 0.9609 |
0.0905 | 2.33 | 4000 | 0.1213 | 0.5726 | 0.6721 | 0.6183 | 0.9614 |
0.0884 | 2.62 | 4500 | 0.1115 | 0.6075 | 0.6738 | 0.6389 | 0.9649 |
0.0862 | 2.91 | 5000 | 0.1202 | 0.5708 | 0.7003 | 0.6290 | 0.9604 |
0.0765 | 3.2 | 5500 | 0.1148 | 0.5965 | 0.7125 | 0.6494 | 0.9644 |
0.0728 | 3.49 | 6000 | 0.1109 | 0.6109 | 0.7052 | 0.6547 | 0.9654 |
0.0706 | 3.78 | 6500 | 0.1164 | 0.6072 | 0.7031 | 0.6516 | 0.9641 |
0.0699 | 4.07 | 7000 | 0.1121 | 0.6404 | 0.7058 | 0.6715 | 0.9671 |
0.0615 | 4.37 | 7500 | 0.1140 | 0.6343 | 0.7143 | 0.6719 | 0.9670 |
0.0595 | 4.66 | 8000 | 0.1128 | 0.6284 | 0.7192 | 0.6707 | 0.9665 |
0.0603 | 4.95 | 8500 | 0.1113 | 0.6368 | 0.7267 | 0.6788 | 0.9676 |
0.0534 | 5.24 | 9000 | 0.1134 | 0.6662 | 0.7112 | 0.6879 | 0.9693 |
0.0522 | 5.53 | 9500 | 0.1168 | 0.6282 | 0.7298 | 0.6752 | 0.9665 |
0.049 | 5.82 | 10000 | 0.1157 | 0.6429 | 0.7250 | 0.6815 | 0.9682 |
0.0488 | 6.11 | 10500 | 0.1170 | 0.6660 | 0.7188 | 0.6914 | 0.9689 |
0.0434 | 6.4 | 11000 | 0.1176 | 0.6701 | 0.7013 | 0.6854 | 0.9682 |
0.0449 | 6.69 | 11500 | 0.1183 | 0.6474 | 0.7236 | 0.6834 | 0.9672 |
0.0437 | 6.98 | 12000 | 0.1208 | 0.6374 | 0.7324 | 0.6816 | 0.9674 |
0.0395 | 7.28 | 12500 | 0.1192 | 0.6722 | 0.7042 | 0.6879 | 0.9690 |
0.0385 | 7.57 | 13000 | 0.1207 | 0.6558 | 0.7251 | 0.6887 | 0.9695 |
0.0389 | 7.86 | 13500 | 0.1168 | 0.6850 | 0.7146 | 0.6995 | 0.9699 |
0.0336 | 8.15 | 14000 | 0.1281 | 0.6509 | 0.7329 | 0.6895 | 0.9685 |
0.0324 | 8.44 | 14500 | 0.1297 | 0.6414 | 0.7394 | 0.6870 | 0.9669 |
0.0318 | 8.73 | 15000 | 0.1269 | 0.6658 | 0.7321 | 0.6974 | 0.9698 |
0.034 | 9.02 | 15500 | 0.1223 | 0.6783 | 0.7165 | 0.6969 | 0.9701 |
0.0291 | 9.31 | 16000 | 0.1301 | 0.6797 | 0.7217 | 0.7001 | 0.9698 |
0.0296 | 9.6 | 16500 | 0.1293 | 0.6849 | 0.7127 | 0.6985 | 0.9698 |
0.0288 | 9.9 | 17000 | 0.1286 | 0.6566 | 0.7322 | 0.6924 | 0.9693 |
0.0274 | 10.19 | 17500 | 0.1323 | 0.6721 | 0.7201 | 0.6953 | 0.9689 |
0.0259 | 10.48 | 18000 | 0.1310 | 0.6782 | 0.7296 | 0.7029 | 0.9699 |
0.0252 | 10.77 | 18500 | 0.1350 | 0.6746 | 0.7202 | 0.6967 | 0.9701 |
0.0246 | 11.06 | 19000 | 0.1347 | 0.6740 | 0.7384 | 0.7047 | 0.9701 |
0.0214 | 11.35 | 19500 | 0.1399 | 0.6736 | 0.7347 | 0.7028 | 0.9704 |
0.0227 | 11.64 | 20000 | 0.1377 | 0.6730 | 0.7358 | 0.7030 | 0.9695 |
0.0227 | 11.93 | 20500 | 0.1365 | 0.6994 | 0.7205 | 0.7098 | 0.9714 |
0.0213 | 12.22 | 21000 | 0.1351 | 0.6772 | 0.7363 | 0.7055 | 0.9703 |
0.0191 | 12.51 | 21500 | 0.1407 | 0.6702 | 0.7465 | 0.7063 | 0.9699 |
0.0198 | 12.81 | 22000 | 0.1403 | 0.6829 | 0.7237 | 0.7027 | 0.9701 |
0.0197 | 13.1 | 22500 | 0.1418 | 0.6820 | 0.7351 | 0.7075 | 0.9707 |
0.0184 | 13.39 | 23000 | 0.1387 | 0.7009 | 0.7267 | 0.7136 | 0.9712 |
0.0173 | 13.68 | 23500 | 0.1471 | 0.6629 | 0.7381 | 0.6985 | 0.9692 |
0.018 | 13.97 | 24000 | 0.1470 | 0.6786 | 0.7306 | 0.7037 | 0.9698 |
0.016 | 14.26 | 24500 | 0.1493 | 0.6832 | 0.7350 | 0.7081 | 0.9704 |
0.0159 | 14.55 | 25000 | 0.1508 | 0.6715 | 0.7533 | 0.7101 | 0.9697 |
0.0158 | 14.84 | 25500 | 0.1526 | 0.6792 | 0.7361 | 0.7065 | 0.9694 |
0.0155 | 15.13 | 26000 | 0.1491 | 0.6936 | 0.7393 | 0.7157 | 0.9713 |
0.014 | 15.42 | 26500 | 0.1523 | 0.6975 | 0.7376 | 0.7170 | 0.9713 |
0.0145 | 15.72 | 27000 | 0.1503 | 0.7004 | 0.7227 | 0.7114 | 0.9709 |
0.0142 | 16.01 | 27500 | 0.1533 | 0.6804 | 0.7442 | 0.7109 | 0.9705 |
0.0131 | 16.3 | 28000 | 0.1533 | 0.6866 | 0.7403 | 0.7124 | 0.9706 |
0.0129 | 16.59 | 28500 | 0.1549 | 0.6798 | 0.7363 | 0.7069 | 0.9697 |
0.0128 | 16.88 | 29000 | 0.1591 | 0.6902 | 0.7314 | 0.7102 | 0.9710 |
0.0121 | 17.17 | 29500 | 0.1596 | 0.6780 | 0.7399 | 0.7076 | 0.9703 |
0.0116 | 17.46 | 30000 | 0.1576 | 0.6929 | 0.7347 | 0.7132 | 0.9710 |
0.012 | 17.75 | 30500 | 0.1546 | 0.6888 | 0.7370 | 0.7121 | 0.9708 |
0.0126 | 18.04 | 31000 | 0.1619 | 0.6927 | 0.7361 | 0.7138 | 0.9710 |
0.0112 | 18.34 | 31500 | 0.1610 | 0.6809 | 0.7415 | 0.7099 | 0.9702 |
0.011 | 18.63 | 32000 | 0.1603 | 0.6873 | 0.7319 | 0.7089 | 0.9706 |
0.011 | 18.92 | 32500 | 0.1644 | 0.6743 | 0.7389 | 0.7051 | 0.9696 |
0.0102 | 19.21 | 33000 | 0.1625 | 0.6966 | 0.7342 | 0.7149 | 0.9711 |
0.0098 | 19.5 | 33500 | 0.1678 | 0.6993 | 0.7311 | 0.7148 | 0.9711 |
0.0103 | 19.79 | 34000 | 0.1657 | 0.6911 | 0.7410 | 0.7152 | 0.9709 |
0.0102 | 20.08 | 34500 | 0.1649 | 0.6954 | 0.7275 | 0.7110 | 0.9712 |
0.0095 | 20.37 | 35000 | 0.1683 | 0.6957 | 0.7266 | 0.7108 | 0.9708 |
0.0095 | 20.66 | 35500 | 0.1661 | 0.6914 | 0.7344 | 0.7122 | 0.9710 |
0.0089 | 20.95 | 36000 | 0.1678 | 0.6962 | 0.7302 | 0.7128 | 0.9713 |
0.0084 | 21.25 | 36500 | 0.1673 | 0.6897 | 0.7416 | 0.7147 | 0.9712 |
Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 2
Model tree for haryoaw/scenario-non-kd-pre-ner-half-mdeberta_data-univner_full66
Base model
microsoft/mdeberta-v3-base