Edit model card

scenario-non-kd-pre-ner-half-mdeberta_data-univner_full66

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1673
  • Precision: 0.6897
  • Recall: 0.7416
  • F1: 0.7147
  • Accuracy: 0.9712

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3169 0.29 500 0.2023 0.2870 0.3272 0.3058 0.9356
0.1897 0.58 1000 0.1647 0.4142 0.4800 0.4447 0.9459
0.1557 0.87 1500 0.1464 0.4614 0.5513 0.5023 0.9516
0.1336 1.16 2000 0.1368 0.4959 0.5706 0.5307 0.9543
0.117 1.46 2500 0.1359 0.5037 0.6188 0.5554 0.9541
0.1133 1.75 3000 0.1230 0.5571 0.6091 0.5820 0.9601
0.1062 2.04 3500 0.1214 0.5613 0.6682 0.6101 0.9609
0.0905 2.33 4000 0.1213 0.5726 0.6721 0.6183 0.9614
0.0884 2.62 4500 0.1115 0.6075 0.6738 0.6389 0.9649
0.0862 2.91 5000 0.1202 0.5708 0.7003 0.6290 0.9604
0.0765 3.2 5500 0.1148 0.5965 0.7125 0.6494 0.9644
0.0728 3.49 6000 0.1109 0.6109 0.7052 0.6547 0.9654
0.0706 3.78 6500 0.1164 0.6072 0.7031 0.6516 0.9641
0.0699 4.07 7000 0.1121 0.6404 0.7058 0.6715 0.9671
0.0615 4.37 7500 0.1140 0.6343 0.7143 0.6719 0.9670
0.0595 4.66 8000 0.1128 0.6284 0.7192 0.6707 0.9665
0.0603 4.95 8500 0.1113 0.6368 0.7267 0.6788 0.9676
0.0534 5.24 9000 0.1134 0.6662 0.7112 0.6879 0.9693
0.0522 5.53 9500 0.1168 0.6282 0.7298 0.6752 0.9665
0.049 5.82 10000 0.1157 0.6429 0.7250 0.6815 0.9682
0.0488 6.11 10500 0.1170 0.6660 0.7188 0.6914 0.9689
0.0434 6.4 11000 0.1176 0.6701 0.7013 0.6854 0.9682
0.0449 6.69 11500 0.1183 0.6474 0.7236 0.6834 0.9672
0.0437 6.98 12000 0.1208 0.6374 0.7324 0.6816 0.9674
0.0395 7.28 12500 0.1192 0.6722 0.7042 0.6879 0.9690
0.0385 7.57 13000 0.1207 0.6558 0.7251 0.6887 0.9695
0.0389 7.86 13500 0.1168 0.6850 0.7146 0.6995 0.9699
0.0336 8.15 14000 0.1281 0.6509 0.7329 0.6895 0.9685
0.0324 8.44 14500 0.1297 0.6414 0.7394 0.6870 0.9669
0.0318 8.73 15000 0.1269 0.6658 0.7321 0.6974 0.9698
0.034 9.02 15500 0.1223 0.6783 0.7165 0.6969 0.9701
0.0291 9.31 16000 0.1301 0.6797 0.7217 0.7001 0.9698
0.0296 9.6 16500 0.1293 0.6849 0.7127 0.6985 0.9698
0.0288 9.9 17000 0.1286 0.6566 0.7322 0.6924 0.9693
0.0274 10.19 17500 0.1323 0.6721 0.7201 0.6953 0.9689
0.0259 10.48 18000 0.1310 0.6782 0.7296 0.7029 0.9699
0.0252 10.77 18500 0.1350 0.6746 0.7202 0.6967 0.9701
0.0246 11.06 19000 0.1347 0.6740 0.7384 0.7047 0.9701
0.0214 11.35 19500 0.1399 0.6736 0.7347 0.7028 0.9704
0.0227 11.64 20000 0.1377 0.6730 0.7358 0.7030 0.9695
0.0227 11.93 20500 0.1365 0.6994 0.7205 0.7098 0.9714
0.0213 12.22 21000 0.1351 0.6772 0.7363 0.7055 0.9703
0.0191 12.51 21500 0.1407 0.6702 0.7465 0.7063 0.9699
0.0198 12.81 22000 0.1403 0.6829 0.7237 0.7027 0.9701
0.0197 13.1 22500 0.1418 0.6820 0.7351 0.7075 0.9707
0.0184 13.39 23000 0.1387 0.7009 0.7267 0.7136 0.9712
0.0173 13.68 23500 0.1471 0.6629 0.7381 0.6985 0.9692
0.018 13.97 24000 0.1470 0.6786 0.7306 0.7037 0.9698
0.016 14.26 24500 0.1493 0.6832 0.7350 0.7081 0.9704
0.0159 14.55 25000 0.1508 0.6715 0.7533 0.7101 0.9697
0.0158 14.84 25500 0.1526 0.6792 0.7361 0.7065 0.9694
0.0155 15.13 26000 0.1491 0.6936 0.7393 0.7157 0.9713
0.014 15.42 26500 0.1523 0.6975 0.7376 0.7170 0.9713
0.0145 15.72 27000 0.1503 0.7004 0.7227 0.7114 0.9709
0.0142 16.01 27500 0.1533 0.6804 0.7442 0.7109 0.9705
0.0131 16.3 28000 0.1533 0.6866 0.7403 0.7124 0.9706
0.0129 16.59 28500 0.1549 0.6798 0.7363 0.7069 0.9697
0.0128 16.88 29000 0.1591 0.6902 0.7314 0.7102 0.9710
0.0121 17.17 29500 0.1596 0.6780 0.7399 0.7076 0.9703
0.0116 17.46 30000 0.1576 0.6929 0.7347 0.7132 0.9710
0.012 17.75 30500 0.1546 0.6888 0.7370 0.7121 0.9708
0.0126 18.04 31000 0.1619 0.6927 0.7361 0.7138 0.9710
0.0112 18.34 31500 0.1610 0.6809 0.7415 0.7099 0.9702
0.011 18.63 32000 0.1603 0.6873 0.7319 0.7089 0.9706
0.011 18.92 32500 0.1644 0.6743 0.7389 0.7051 0.9696
0.0102 19.21 33000 0.1625 0.6966 0.7342 0.7149 0.9711
0.0098 19.5 33500 0.1678 0.6993 0.7311 0.7148 0.9711
0.0103 19.79 34000 0.1657 0.6911 0.7410 0.7152 0.9709
0.0102 20.08 34500 0.1649 0.6954 0.7275 0.7110 0.9712
0.0095 20.37 35000 0.1683 0.6957 0.7266 0.7108 0.9708
0.0095 20.66 35500 0.1661 0.6914 0.7344 0.7122 0.9710
0.0089 20.95 36000 0.1678 0.6962 0.7302 0.7128 0.9713
0.0084 21.25 36500 0.1673 0.6897 0.7416 0.7147 0.9712

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
2
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haryoaw/scenario-non-kd-pre-ner-half-mdeberta_data-univner_full66

Finetuned
(204)
this model