metadata
base_model: microsoft/mdeberta-v3-base
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-non-kd-scr-ner-half-mdeberta_data-univner_full44
results: []
scenario-non-kd-scr-ner-half-mdeberta_data-univner_full44
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3227
- Precision: 0.6152
- Recall: 0.5804
- F1: 0.5973
- Accuracy: 0.9617
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.357 | 0.2910 | 500 | 0.2880 | 0.3006 | 0.1147 | 0.1660 | 0.9285 |
0.2425 | 0.5821 | 1000 | 0.2106 | 0.3468 | 0.2782 | 0.3087 | 0.9383 |
0.1767 | 0.8731 | 1500 | 0.1785 | 0.4322 | 0.3857 | 0.4076 | 0.9469 |
0.1352 | 1.1641 | 2000 | 0.1621 | 0.4749 | 0.4745 | 0.4747 | 0.9520 |
0.1107 | 1.4552 | 2500 | 0.1556 | 0.5238 | 0.4991 | 0.5111 | 0.9553 |
0.1031 | 1.7462 | 3000 | 0.1480 | 0.5536 | 0.5207 | 0.5367 | 0.9576 |
0.0912 | 2.0373 | 3500 | 0.1435 | 0.5286 | 0.5578 | 0.5428 | 0.9579 |
0.0661 | 2.3283 | 4000 | 0.1496 | 0.5510 | 0.5698 | 0.5602 | 0.9589 |
0.066 | 2.6193 | 4500 | 0.1502 | 0.5587 | 0.5742 | 0.5663 | 0.9594 |
0.0646 | 2.9104 | 5000 | 0.1440 | 0.5779 | 0.5803 | 0.5791 | 0.9609 |
0.0492 | 3.2014 | 5500 | 0.1590 | 0.5898 | 0.5656 | 0.5774 | 0.9608 |
0.0428 | 3.4924 | 6000 | 0.1613 | 0.5819 | 0.5634 | 0.5725 | 0.9603 |
0.0447 | 3.7835 | 6500 | 0.1602 | 0.5970 | 0.5742 | 0.5854 | 0.9615 |
0.0407 | 4.0745 | 7000 | 0.1667 | 0.5744 | 0.5995 | 0.5867 | 0.9611 |
0.0311 | 4.3655 | 7500 | 0.1762 | 0.5897 | 0.5754 | 0.5824 | 0.9610 |
0.0308 | 4.6566 | 8000 | 0.1707 | 0.5928 | 0.5862 | 0.5895 | 0.9609 |
0.0303 | 4.9476 | 8500 | 0.1717 | 0.5882 | 0.5915 | 0.5899 | 0.9610 |
0.0217 | 5.2386 | 9000 | 0.1826 | 0.5808 | 0.6025 | 0.5915 | 0.9611 |
0.0212 | 5.5297 | 9500 | 0.1827 | 0.5949 | 0.6006 | 0.5977 | 0.9613 |
0.0228 | 5.8207 | 10000 | 0.1942 | 0.5760 | 0.5809 | 0.5784 | 0.9601 |
0.02 | 6.1118 | 10500 | 0.1973 | 0.5982 | 0.5913 | 0.5947 | 0.9611 |
0.0146 | 6.4028 | 11000 | 0.2058 | 0.5938 | 0.5871 | 0.5904 | 0.9608 |
0.0161 | 6.6938 | 11500 | 0.2025 | 0.5973 | 0.5878 | 0.5925 | 0.9612 |
0.0166 | 6.9849 | 12000 | 0.2053 | 0.5972 | 0.5921 | 0.5947 | 0.9613 |
0.0115 | 7.2759 | 12500 | 0.2259 | 0.6083 | 0.5601 | 0.5832 | 0.9609 |
0.0116 | 7.5669 | 13000 | 0.2133 | 0.5944 | 0.6029 | 0.5986 | 0.9608 |
0.0114 | 7.8580 | 13500 | 0.2208 | 0.5883 | 0.5973 | 0.5928 | 0.9608 |
0.0098 | 8.1490 | 14000 | 0.2363 | 0.6118 | 0.5745 | 0.5926 | 0.9611 |
0.0084 | 8.4400 | 14500 | 0.2387 | 0.6094 | 0.5748 | 0.5916 | 0.9611 |
0.0097 | 8.7311 | 15000 | 0.2285 | 0.5819 | 0.5998 | 0.5907 | 0.9602 |
0.0083 | 9.0221 | 15500 | 0.2402 | 0.5992 | 0.5806 | 0.5897 | 0.9610 |
0.0064 | 9.3132 | 16000 | 0.2456 | 0.6297 | 0.5679 | 0.5972 | 0.9617 |
0.0068 | 9.6042 | 16500 | 0.2487 | 0.6035 | 0.5752 | 0.5890 | 0.9607 |
0.0072 | 9.8952 | 17000 | 0.2403 | 0.5910 | 0.6009 | 0.5959 | 0.9610 |
0.0062 | 10.1863 | 17500 | 0.2465 | 0.5981 | 0.5972 | 0.5976 | 0.9615 |
0.0045 | 10.4773 | 18000 | 0.2562 | 0.6062 | 0.5776 | 0.5915 | 0.9611 |
0.0055 | 10.7683 | 18500 | 0.2542 | 0.6139 | 0.5826 | 0.5978 | 0.9615 |
0.0054 | 11.0594 | 19000 | 0.2596 | 0.6128 | 0.5807 | 0.5963 | 0.9616 |
0.0037 | 11.3504 | 19500 | 0.2631 | 0.5872 | 0.6015 | 0.5943 | 0.9607 |
0.0048 | 11.6414 | 20000 | 0.2613 | 0.5998 | 0.6012 | 0.6005 | 0.9615 |
0.004 | 11.9325 | 20500 | 0.2576 | 0.6108 | 0.5892 | 0.5998 | 0.9616 |
0.0042 | 12.2235 | 21000 | 0.2647 | 0.5943 | 0.6027 | 0.5984 | 0.9611 |
0.0029 | 12.5146 | 21500 | 0.2773 | 0.6058 | 0.5819 | 0.5936 | 0.9613 |
0.0037 | 12.8056 | 22000 | 0.2785 | 0.6111 | 0.5874 | 0.5990 | 0.9612 |
0.0031 | 13.0966 | 22500 | 0.2819 | 0.6281 | 0.5790 | 0.6026 | 0.9618 |
0.0029 | 13.3877 | 23000 | 0.2794 | 0.6002 | 0.5915 | 0.5958 | 0.9609 |
0.0024 | 13.6787 | 23500 | 0.2842 | 0.6017 | 0.6019 | 0.6018 | 0.9615 |
0.0034 | 13.9697 | 24000 | 0.2889 | 0.6133 | 0.5806 | 0.5965 | 0.9616 |
0.0021 | 14.2608 | 24500 | 0.2876 | 0.6133 | 0.5803 | 0.5963 | 0.9616 |
0.0025 | 14.5518 | 25000 | 0.2871 | 0.6130 | 0.5845 | 0.5984 | 0.9614 |
0.0027 | 14.8428 | 25500 | 0.2921 | 0.6087 | 0.5835 | 0.5958 | 0.9613 |
0.0021 | 15.1339 | 26000 | 0.2888 | 0.5822 | 0.5998 | 0.5909 | 0.9607 |
0.0017 | 15.4249 | 26500 | 0.2899 | 0.6095 | 0.5911 | 0.6002 | 0.9613 |
0.0026 | 15.7159 | 27000 | 0.2968 | 0.6065 | 0.5839 | 0.5950 | 0.9613 |
0.002 | 16.0070 | 27500 | 0.3023 | 0.6158 | 0.5752 | 0.5949 | 0.9614 |
0.0015 | 16.2980 | 28000 | 0.2988 | 0.6006 | 0.5954 | 0.5980 | 0.9614 |
0.002 | 16.5891 | 28500 | 0.2983 | 0.5905 | 0.6045 | 0.5974 | 0.9611 |
0.0017 | 16.8801 | 29000 | 0.3006 | 0.6080 | 0.5838 | 0.5956 | 0.9614 |
0.0016 | 17.1711 | 29500 | 0.3078 | 0.5986 | 0.5921 | 0.5953 | 0.9612 |
0.0016 | 17.4622 | 30000 | 0.3066 | 0.6084 | 0.5892 | 0.5987 | 0.9617 |
0.0015 | 17.7532 | 30500 | 0.3153 | 0.6110 | 0.5786 | 0.5943 | 0.9617 |
0.0015 | 18.0442 | 31000 | 0.3134 | 0.5952 | 0.5954 | 0.5953 | 0.9611 |
0.0009 | 18.3353 | 31500 | 0.3201 | 0.6045 | 0.5904 | 0.5974 | 0.9615 |
0.0017 | 18.6263 | 32000 | 0.3149 | 0.6095 | 0.5875 | 0.5983 | 0.9614 |
0.0014 | 18.9173 | 32500 | 0.3227 | 0.6152 | 0.5804 | 0.5973 | 0.9617 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1