metadata
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: XLM-R-BASE-VanillaFT-5E-spring-feather-1-D-08-03-T-08-15
results: []
XLM-R-BASE-VanillaFT-5E-spring-feather-1-D-08-03-T-08-15
This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4196
- Precision 0: 0.8318
- Precision 1: 0.7503
- Recall 0: 0.8119
- Recall 1: 0.7767
- F1 0: 0.8217
- F1 1: 0.7633
- Precision Weighted: 0.7987
- Recall Weighted: 0.7976
- F1 Weighted: 0.7980
- Accuracy: 0.7976
- F1 Macro: 0.7925
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 402
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision 0 | Precision 1 | Recall 0 | Recall 1 | F1 0 | F1 1 | Precision Weighted | Recall Weighted | F1 Weighted | Accuracy | F1 Macro |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5481 | 1.0 | 469 | 0.4437 | 0.7838 | 0.7441 | 0.8226 | 0.6900 | 0.8028 | 0.7161 | 0.7677 | 0.7688 | 0.7676 | 0.7688 | 0.7594 |
0.4178 | 2.0 | 938 | 0.4403 | 0.8529 | 0.6988 | 0.7519 | 0.8211 | 0.7994 | 0.7553 | 0.7904 | 0.7800 | 0.7815 | 0.7800 | 0.7773 |
0.3416 | 3.0 | 1407 | 0.4196 | 0.8318 | 0.7503 | 0.8119 | 0.7767 | 0.8217 | 0.7633 | 0.7987 | 0.7976 | 0.7980 | 0.7976 | 0.7925 |
0.2757 | 4.0 | 1876 | 0.4393 | 0.8430 | 0.7153 | 0.7735 | 0.8024 | 0.8068 | 0.7565 | 0.7912 | 0.7852 | 0.7864 | 0.7852 | 0.7816 |
0.2231 | 5.0 | 2345 | 0.4908 | 0.8343 | 0.7418 | 0.8031 | 0.7827 | 0.8184 | 0.7617 | 0.7968 | 0.7948 | 0.7954 | 0.7948 | 0.7901 |
Framework versions
- Transformers 4.43.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1