Edit model card

QA_using_DistilBERT_LORA_qv

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.7782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
4.7211 0.01 500 4.4152
4.3014 0.03 1000 4.3057
4.2235 0.04 1500 4.2254
4.1424 0.06 2000 4.1592
4.1312 0.07 2500 4.1091
4.033 0.09 3000 3.8720
3.739 0.1 3500 3.7028
3.6547 0.12 4000 3.5784
3.4915 0.13 4500 3.4967
3.5266 0.15 5000 3.4501
3.4602 0.16 5500 3.5048
3.4749 0.18 6000 3.3635
3.4088 0.19 6500 3.3465
3.3869 0.21 7000 3.3438
3.3835 0.22 7500 3.2838
3.2902 0.23 8000 3.3156
3.2747 0.25 8500 3.2770
3.2968 0.26 9000 3.2578
3.2305 0.28 9500 3.2645
3.2288 0.29 10000 3.1857
3.2717 0.31 10500 3.2326
3.1697 0.32 11000 3.2098
3.1786 0.34 11500 3.2656
3.2063 0.35 12000 3.1725
3.186 0.37 12500 3.1901
3.1389 0.38 13000 3.1706
3.234 0.4 13500 3.1553
3.1207 0.41 14000 3.1764
3.1764 0.42 14500 3.1441
3.1458 0.44 15000 3.1459
3.0631 0.45 15500 3.1461
3.1193 0.47 16000 3.1306
3.0437 0.48 16500 3.1775
3.1309 0.5 17000 3.0853
3.0448 0.51 17500 3.1136
3.0273 0.53 18000 3.0640
3.0826 0.54 18500 3.0786
3.0044 0.56 19000 3.0843
3.0672 0.57 19500 3.0516
3.0447 0.59 20000 3.0581
3.0168 0.6 20500 3.0369
2.9619 0.62 21000 3.0725
3.0981 0.63 21500 3.0389
3.0247 0.64 22000 3.0339
3.041 0.66 22500 3.0465
3.0286 0.67 23000 3.0806
3.0136 0.69 23500 3.0149
2.9814 0.7 24000 3.0128
3.0359 0.72 24500 3.0086
2.9939 0.73 25000 3.0216
2.996 0.75 25500 3.1415
2.9554 0.76 26000 3.0490
2.9773 0.78 26500 3.0457
2.9625 0.79 27000 2.9663
2.9184 0.81 27500 2.9981
2.9735 0.82 28000 3.0404
2.9567 0.84 28500 2.9621
2.9706 0.85 29000 3.0024
2.9436 0.86 29500 2.9535
2.9069 0.88 30000 2.9993
2.9652 0.89 30500 2.9393
2.9426 0.91 31000 2.9693
2.8936 0.92 31500 2.9111
2.9245 0.94 32000 2.9678
2.9054 0.95 32500 2.9263
2.8426 0.97 33000 2.9429
2.8782 0.98 33500 2.9232
2.8963 1.0 34000 2.9545
2.8757 1.01 34500 2.9181
2.853 1.03 35000 2.8925
2.8758 1.04 35500 2.9464
2.9179 1.06 36000 2.9076
2.8924 1.07 36500 2.8874
2.9488 1.08 37000 2.9284
2.8746 1.1 37500 2.9012
2.8026 1.11 38000 2.8679
2.8177 1.13 38500 2.9000
2.8113 1.14 39000 2.9069
2.8047 1.16 39500 2.8755
2.8437 1.17 40000 2.9043
2.8093 1.19 40500 2.8915
2.7881 1.2 41000 2.8665
2.8251 1.22 41500 2.8516
2.8356 1.23 42000 2.8927
2.7805 1.25 42500 2.8759
2.8944 1.26 43000 2.8491
2.88 1.27 43500 2.8458
2.8109 1.29 44000 2.8613
2.7595 1.3 44500 2.8734
2.8038 1.32 45000 2.8344
2.8113 1.33 45500 2.8448
2.8396 1.35 46000 2.8216
2.833 1.36 46500 2.8445
2.7711 1.38 47000 2.8499
2.7933 1.39 47500 2.8649
2.8079 1.41 48000 2.8390
2.781 1.42 48500 2.7999
2.8195 1.44 49000 2.8320
2.7553 1.45 49500 2.8500
2.7769 1.47 50000 2.8364
2.6745 1.48 50500 2.8392
2.7891 1.49 51000 2.8166
2.7691 1.51 51500 2.8195
2.7744 1.52 52000 2.8505
2.739 1.54 52500 2.8055
2.7843 1.55 53000 2.8633
2.7072 1.57 53500 2.8214
2.7658 1.58 54000 2.8178
2.7271 1.6 54500 2.8075
2.8387 1.61 55000 2.8025
2.7425 1.63 55500 2.8061
2.7464 1.64 56000 2.7882
2.7442 1.66 56500 2.8161
2.7398 1.67 57000 2.8091
2.7081 1.69 57500 2.8166
2.759 1.7 58000 2.8014
2.6873 1.71 58500 2.7949
2.8057 1.73 59000 2.8044
2.8156 1.74 59500 2.7860
2.6884 1.76 60000 2.7931
2.7627 1.77 60500 2.7931
2.6991 1.79 61000 2.7895
2.8059 1.8 61500 2.7981
2.7018 1.82 62000 2.7972
2.7027 1.83 62500 2.7956
2.7658 1.85 63000 2.7949
2.7735 1.86 63500 2.7803
2.6972 1.88 64000 2.7894
2.6512 1.89 64500 2.8087
2.6856 1.9 65000 2.7795
2.7292 1.92 65500 2.7772
2.7744 1.93 66000 2.7821
2.8022 1.95 66500 2.7858
2.7054 1.96 67000 2.7816
2.7255 1.98 67500 2.7740
2.6243 1.99 68000 2.7782

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for haurajahra/QA_using_DistilBERT_LORA_qv

Finetuned
(6672)
this model