idt5-base-qg_adapter
This model is a fine-tuned version of muchad/idt5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6825
- Rouge1: 0.4305
- Rouge2: 0.2112
- Rougel: 0.4035
- Rougelsum: 0.4037
- Bleu: 0.1491
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu |
---|---|---|---|---|---|---|---|---|
2.381 | 1.0 | 15289 | 1.8003 | 0.3963 | 0.1873 | 0.3693 | 0.3693 | 0.1330 |
2.2131 | 2.0 | 30578 | 1.7265 | 0.4244 | 0.2052 | 0.3962 | 0.3964 | 0.1456 |
2.1822 | 3.0 | 45867 | 1.7086 | 0.4279 | 0.2094 | 0.4004 | 0.4006 | 0.1483 |
2.1374 | 4.0 | 61156 | 1.6846 | 0.4283 | 0.2110 | 0.4018 | 0.4019 | 0.1494 |
2.1217 | 5.0 | 76445 | 1.6825 | 0.4305 | 0.2112 | 0.4035 | 0.4037 | 0.1491 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 31
Model tree for hawalurahman/idt5-base-qg_adapter
Base model
muchad/idt5-base