|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
- bleu |
|
model-index: |
|
- name: mt5-base-qaqg-finetuned-TydiQA-id |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-base-qaqg-finetuned-TydiQA-id |
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8334 |
|
- Rouge1: 0.5212 |
|
- Rouge2: 0.3529 |
|
- Rougel: 0.5187 |
|
- Rougelsum: 0.5196 |
|
- Bleu: 0.3354 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:------:| |
|
| 1.5538 | 1.0 | 1141 | 0.9977 | 0.4486 | 0.2915 | 0.4465 | 0.4476 | 0.2792 | |
|
| 1.1151 | 2.0 | 2282 | 0.8848 | 0.4774 | 0.3098 | 0.4745 | 0.4753 | 0.3047 | |
|
| 0.9266 | 3.0 | 3423 | 0.8454 | 0.5026 | 0.3348 | 0.5003 | 0.5014 | 0.3183 | |
|
| 0.8067 | 4.0 | 4564 | 0.8357 | 0.5149 | 0.3440 | 0.5127 | 0.5133 | 0.3270 | |
|
| 0.739 | 5.0 | 5705 | 0.8334 | 0.5212 | 0.3529 | 0.5187 | 0.5196 | 0.3354 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0a0+f70bd71a48.nv24.06 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|