hchcsuim's picture
Update README.md
496bfc2 verified
|
raw
history blame
2.5 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - recall
  - precision
  - f1
model-index:
  - name: FFPP-Raw_1FPS_faces-expand-40-aligned_metric
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8064887989445775
          - name: Recall
            type: recall
            value: 0.599275070479259
          - name: Precision
            type: precision
            value: 0.26912642430819317
          - name: F1
            type: f1
            value: 0.37144283574638043

FFPP-Raw_1FPS_faces-expand-40-aligned_metric

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4464
  • Accuracy: 0.8065
  • Recall: 0.5993
  • Precision: 0.2691
  • F1: 0.3714
  • Roc Auc: 0.8135

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1 Roc Auc
0.1821 1.0 1348 0.1286 0.9464 0.8533 0.8953 0.8738 0.9858
0.1333 2.0 2696 0.0715 0.9725 0.9129 0.9586 0.9352 0.9960
0.0809 3.0 4044 0.0520 0.9804 0.9344 0.9743 0.9539 0.9980

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2