metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- recall
- precision
- f1
model-index:
- name: batch-size-16_FFPP-Raw_1FPS_faces-expand-0-aligned_0Real-1Fake
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9814516494985706
- name: Recall
type: recall
value: 0.9431509709751514
- name: Precision
type: precision
value: 0.9706656637833773
- name: F1
type: f1
value: 0.956710529799571
batch-size-16_FFPP-Raw_1FPS_faces-expand-0-aligned_0Real-1Fake
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0500
- Accuracy: 0.9815
- Recall: 0.9432
- Precision: 0.9707
- F1: 0.9567
- Roc Auc: 0.9981
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Roc Auc |
---|---|---|---|---|---|---|---|---|
0.0661 | 1.0 | 1377 | 0.0500 | 0.9815 | 0.9432 | 0.9707 | 0.9567 | 0.9981 |
Framework versions
- Transformers 4.39.2
- Pytorch 2.2.2
- Datasets 2.18.0
- Tokenizers 0.15.2