leaderboard-pr-bot's picture
Adding Evaluation Results
984c374
|
raw
history blame
1.65 kB
metadata
datasets:
  - heegyu/wizard_vicuna_70k_v2
license: apache-2.0

Hyperparameters

  • 3/8 epoch(3rd epoch checkpoing while 8epoch training)
  • 1e-4 -> 1e-5 with cosine lr decay
  • batch size 128
  • max sequence length 2048
  • AdamW(weigth decay=0.01, b1=0.9, b2=0.99, grad_clip=1.0)
  • no warmup
  • BF16
  • Base Model: openlm-research/open_llama_3b_v2
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("heegyu/WizardVicuna-open-llama-3b-v2")
model = AutoModelForCausalLM.from_pretrained("heegyu/WizardVicuna-open-llama-3b-v2")

inputs = tokenizer(["Human: Hi, nice to meet you!\n\nAssistant: "], return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=16)
print(tokenizer.batch_decode(outputs, skip_special_tokens=False))

output: ['Human: Hi, nice to meet you!\n\nAssistant: Hello. Great to meet you too. Well, how can I assist you today?<|endoftext|>']

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 34.11
ARC (25-shot) 37.71
HellaSwag (10-shot) 66.6
MMLU (5-shot) 27.23
TruthfulQA (0-shot) 36.8
Winogrande (5-shot) 63.3
GSM8K (5-shot) 0.99
DROP (3-shot) 6.12