base_model: AdaptLLM/medicine-chat
datasets:
- EleutherAI/pile
- Open-Orca/OpenOrca
- GAIR/lima
- WizardLM/WizardLM_evol_instruct_V2_196k
language:
- en
license: llama2
metrics:
- accuracy
pipeline_tag: text-generation
tags:
- biology
- medical
- llama-cpp
- gguf-my-repo
model-index:
- name: medicine-chat
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 53.75
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/medicine-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 76.11
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/medicine-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 49.98
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/medicine-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 43.46
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/medicine-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 75.69
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/medicine-chat
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 18.95
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AdaptLLM/medicine-chat
name: Open LLM Leaderboard
hellork/medicine-chat-IQ4_NL-GGUF
This model was converted to GGUF format from AdaptLLM/medicine-chat
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo hellork/medicine-chat-IQ4_NL-GGUF --hf-file medicine-chat-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo hellork/medicine-chat-IQ4_NL-GGUF --hf-file medicine-chat-iq4_nl-imat.gguf -c 2048
The Ship's Computer:
Interact with this model by speaking to it. Lean, fast, & private, networked speech to text, AI images, multi-modal voice chat, control apps, webcam, and sound with less than 4GiB of VRAM. whisper_dictation
git clone -b main --single-branch https://github.com/themanyone/whisper_dictation.git
pip install -r whisper_dictation/requirements.txt
git clone https://github.com/ggerganov/whisper.cpp
cd whisper.cpp
GGML_CUDA=1 make -j # assuming CUDA is available. see docs
ln -s server ~/.local/bin/whisper_cpp_server # (just put it somewhere in $PATH)
# -ngl option assums AI accelerator like CUDA is available
llama-server --hf-repo hellork/medicine-chat-IQ4_NL-GGUF --hf-file medicine-chat-iq4_nl-imat.gguf -c 2048 -ngl 17 --port 8888
whisper_cpp_server -l en -m models/ggml-tiny.en.bin --port 7777
cd whisper_dictation
./whisper_cpp_client.py
See the docs for tips on integrating with llama.cpp server, enabling the computer to talk back, draw AI images, carry out voice commands, and other features.
Install Llama.cpp via git:
Note: You can also try this checkpoint with the usage steps listed in the Llama.cpp repo.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo hellork/medicine-chat-IQ4_NL-GGUF --hf-file medicine-chat-iq4_nl-imat.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo hellork/medicine-chat-IQ4_NL-GGUF --hf-file medicine-chat-iq4_nl-imat.gguf -c 2048