julien-c's picture
julien-c HF staff
Migrate model card from transformers-repo
3913c44
---
language: pl
---
# Multilingual + Polish SQuAD1.1
This model is the multilingual model provided by the Google research team with a fine-tuned polish Q&A downstream task.
## Details of the language model
Language model ([**bert-base-multilingual-cased**](https://github.com/google-research/bert/blob/master/multilingual.md)):
12-layer, 768-hidden, 12-heads, 110M parameters.
Trained on cased text in the top 104 languages with the largest Wikipedias.
## Details of the downstream task
Using the `mtranslate` Python module, [**SQuAD1.1**](https://rajpurkar.github.io/SQuAD-explorer/) was machine-translated. In order to find the start tokens, the direct translations of the answers were searched in the corresponding paragraphs. Due to the different translations depending on the context (missing context in the pure answer), the answer could not always be found in the text, and thus a loss of question-answer examples occurred. This is a potential problem where errors can occur in the data set.
| Dataset | # Q&A |
| ---------------------- | ----- |
| SQuAD1.1 Train | 87.7 K |
| Polish SQuAD1.1 Train | 39.5 K |
| SQuAD1.1 Dev | 10.6 K |
| Polish SQuAD1.1 Dev | 2.6 K |
## Model benchmark
| Model | EM | F1 |
| ---------------------- | ----- | ----- |
| [SlavicBERT](https://huggingface.co/DeepPavlov/bert-base-bg-cs-pl-ru-cased) | **60.89** | 71.68 |
| [polBERT](https://huggingface.co/dkleczek/bert-base-polish-uncased-v1) | 57.46 | 68.87 |
| [multiBERT](https://huggingface.co/bert-base-multilingual-cased) | 60.67 | **71.89** |
| [xlm](https://huggingface.co/xlm-mlm-100-1280) | 47.98 | 59.42 |
## Model training
The model was trained on a **Tesla V100** GPU with the following command:
```python
export SQUAD_DIR=path/to/pl_squad
python run_squad.py
--model_type bert \
--model_name_or_path bert-base-multilingual-cased \
--do_train \
--do_eval \
--train_file $SQUAD_DIR/pl_squadv1_train_clean.json \
--predict_file $SQUAD_DIR/pl_squadv1_dev_clean.json \
--num_train_epochs 2 \
--max_seq_length 384 \
--doc_stride 128 \
--save_steps=8000 \
--output_dir ../../output \
--overwrite_cache \
--overwrite_output_dir
```
**Results**:
{'exact': 60.670731707317074, 'f1': 71.8952193697293, 'total': 2624, 'HasAns_exact': 60.670731707317074, 'HasAns_f1': 71.8952193697293,
'HasAns_total': 2624, 'best_exact': 60.670731707317074, 'best_exact_thresh': 0.0, 'best_f1': 71.8952193697293, 'best_f1_thresh': 0.0}
## Model in action
Fast usage with **pipelines**:
```python
from transformers import pipeline
qa_pipeline = pipeline(
"question-answering",
model="henryk/bert-base-multilingual-cased-finetuned-polish-squad1",
tokenizer="henryk/bert-base-multilingual-cased-finetuned-polish-squad1"
)
qa_pipeline({
'context': "Warszawa jest największym miastem w Polsce pod względem liczby ludności i powierzchni",
'question': "Jakie jest największe miasto w Polsce?"})
```
# Output:
```json
{
"score": 0.9988,
"start": 0,
"end": 8,
"answer": "Warszawa"
}
```
## Contact
Please do not hesitate to contact me via [LinkedIn](https://www.linkedin.com/in/henryk-borzymowski-0755a2167/) if you want to discuss or get access to the Polish version of SQuAD.