patrickvonplaten commited on
Commit
2d7be9e
1 Parent(s): 871f1b5

Create my_unet_model.py

Browse files
Files changed (1) hide show
  1. unet/my_unet_model.py +1129 -0
unet/my_unet_model.py ADDED
@@ -0,0 +1,1129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import Any, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.utils.checkpoint
20
+
21
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
22
+ from diffusers.loaders import UNet2DConditionLoadersMixin
23
+ from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
24
+ from diffusers.models.activations import get_activation
25
+ from diffusers.models.attention_processor import (
26
+ ADDED_KV_ATTENTION_PROCESSORS,
27
+ CROSS_ATTENTION_PROCESSORS,
28
+ AttentionProcessor,
29
+ AttnAddedKVProcessor,
30
+ AttnProcessor,
31
+ )
32
+ from diffusers.models.embeddings import (
33
+ GaussianFourierProjection,
34
+ ImageHintTimeEmbedding,
35
+ ImageProjection,
36
+ ImageTimeEmbedding,
37
+ PositionNet,
38
+ TextImageProjection,
39
+ TextImageTimeEmbedding,
40
+ TextTimeEmbedding,
41
+ TimestepEmbedding,
42
+ Timesteps,
43
+ )
44
+ from diffusers.models.modeling_utils import ModelMixin
45
+ from diffusers.models.unet_2d_blocks import (
46
+ UNetMidBlock2DCrossAttn,
47
+ UNetMidBlock2DSimpleCrossAttn,
48
+ get_down_block,
49
+ get_up_block,
50
+ )
51
+
52
+
53
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
54
+
55
+
56
+ @dataclass
57
+ class UNet2DConditionOutput(BaseOutput):
58
+ """
59
+ The output of [`MyUNetModel`].
60
+
61
+ Args:
62
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
63
+ The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
64
+ """
65
+
66
+ sample: torch.FloatTensor = None
67
+
68
+
69
+ class MyUNetModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
70
+ r"""
71
+ A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
72
+ shaped output.
73
+
74
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
75
+ for all models (such as downloading or saving).
76
+
77
+ Parameters:
78
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
79
+ Height and width of input/output sample.
80
+ in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
81
+ out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
82
+ center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
83
+ flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
84
+ Whether to flip the sin to cos in the time embedding.
85
+ freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
86
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
87
+ The tuple of downsample blocks to use.
88
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
89
+ Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
90
+ `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
91
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
92
+ The tuple of upsample blocks to use.
93
+ only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
94
+ Whether to include self-attention in the basic transformer blocks, see
95
+ [`~models.attention.BasicTransformerBlock`].
96
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
97
+ The tuple of output channels for each block.
98
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
99
+ downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
100
+ mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
101
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
102
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
103
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
104
+ If `None`, normalization and activation layers is skipped in post-processing.
105
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
106
+ cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
107
+ The dimension of the cross attention features.
108
+ transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
109
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
110
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
111
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
112
+ encoder_hid_dim (`int`, *optional*, defaults to None):
113
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
114
+ dimension to `cross_attention_dim`.
115
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
116
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
117
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
118
+ attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
119
+ num_attention_heads (`int`, *optional*):
120
+ The number of attention heads. If not defined, defaults to `attention_head_dim`
121
+ resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
122
+ for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
123
+ class_embed_type (`str`, *optional*, defaults to `None`):
124
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
125
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
126
+ addition_embed_type (`str`, *optional*, defaults to `None`):
127
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
128
+ "text". "text" will use the `TextTimeEmbedding` layer.
129
+ addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
130
+ Dimension for the timestep embeddings.
131
+ num_class_embeds (`int`, *optional*, defaults to `None`):
132
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
133
+ class conditioning with `class_embed_type` equal to `None`.
134
+ time_embedding_type (`str`, *optional*, defaults to `positional`):
135
+ The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
136
+ time_embedding_dim (`int`, *optional*, defaults to `None`):
137
+ An optional override for the dimension of the projected time embedding.
138
+ time_embedding_act_fn (`str`, *optional*, defaults to `None`):
139
+ Optional activation function to use only once on the time embeddings before they are passed to the rest of
140
+ the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
141
+ timestep_post_act (`str`, *optional*, defaults to `None`):
142
+ The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
143
+ time_cond_proj_dim (`int`, *optional*, defaults to `None`):
144
+ The dimension of `cond_proj` layer in the timestep embedding.
145
+ conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
146
+ conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
147
+ projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
148
+ `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
149
+ class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
150
+ embeddings with the class embeddings.
151
+ mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
152
+ Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
153
+ `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
154
+ `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
155
+ otherwise.
156
+ """
157
+
158
+ _supports_gradient_checkpointing = True
159
+
160
+ @register_to_config
161
+ def __init__(
162
+ self,
163
+ sample_size: Optional[int] = None,
164
+ in_channels: int = 4,
165
+ out_channels: int = 4,
166
+ center_input_sample: bool = False,
167
+ flip_sin_to_cos: bool = True,
168
+ freq_shift: int = 0,
169
+ down_block_types: Tuple[str] = (
170
+ "CrossAttnDownBlock2D",
171
+ "CrossAttnDownBlock2D",
172
+ "CrossAttnDownBlock2D",
173
+ "DownBlock2D",
174
+ ),
175
+ mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
176
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
177
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
178
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
179
+ layers_per_block: Union[int, Tuple[int]] = 2,
180
+ downsample_padding: int = 1,
181
+ mid_block_scale_factor: float = 1,
182
+ dropout: float = 0.0,
183
+ act_fn: str = "silu",
184
+ norm_num_groups: Optional[int] = 32,
185
+ norm_eps: float = 1e-5,
186
+ cross_attention_dim: Union[int, Tuple[int]] = 1280,
187
+ transformer_layers_per_block: Union[int, Tuple[int]] = 1,
188
+ encoder_hid_dim: Optional[int] = None,
189
+ encoder_hid_dim_type: Optional[str] = None,
190
+ attention_head_dim: Union[int, Tuple[int]] = 8,
191
+ num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
192
+ dual_cross_attention: bool = False,
193
+ use_linear_projection: bool = False,
194
+ class_embed_type: Optional[str] = None,
195
+ addition_embed_type: Optional[str] = None,
196
+ addition_time_embed_dim: Optional[int] = None,
197
+ num_class_embeds: Optional[int] = None,
198
+ upcast_attention: bool = False,
199
+ resnet_time_scale_shift: str = "default",
200
+ resnet_skip_time_act: bool = False,
201
+ resnet_out_scale_factor: int = 1.0,
202
+ time_embedding_type: str = "positional",
203
+ time_embedding_dim: Optional[int] = None,
204
+ time_embedding_act_fn: Optional[str] = None,
205
+ timestep_post_act: Optional[str] = None,
206
+ time_cond_proj_dim: Optional[int] = None,
207
+ conv_in_kernel: int = 3,
208
+ conv_out_kernel: int = 3,
209
+ projection_class_embeddings_input_dim: Optional[int] = None,
210
+ attention_type: str = "default",
211
+ class_embeddings_concat: bool = False,
212
+ mid_block_only_cross_attention: Optional[bool] = None,
213
+ cross_attention_norm: Optional[str] = None,
214
+ addition_embed_type_num_heads=64,
215
+ ):
216
+ super().__init__()
217
+
218
+ self.sample_size = sample_size
219
+
220
+ if num_attention_heads is not None:
221
+ raise ValueError(
222
+ "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
223
+ )
224
+
225
+ # If `num_attention_heads` is not defined (which is the case for most models)
226
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
227
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
228
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
229
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
230
+ # which is why we correct for the naming here.
231
+ num_attention_heads = num_attention_heads or attention_head_dim
232
+
233
+ # Check inputs
234
+ if len(down_block_types) != len(up_block_types):
235
+ raise ValueError(
236
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
237
+ )
238
+
239
+ if len(block_out_channels) != len(down_block_types):
240
+ raise ValueError(
241
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
242
+ )
243
+
244
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
245
+ raise ValueError(
246
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
247
+ )
248
+
249
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
250
+ raise ValueError(
251
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
252
+ )
253
+
254
+ if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
255
+ raise ValueError(
256
+ f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
257
+ )
258
+
259
+ if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
260
+ raise ValueError(
261
+ f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
262
+ )
263
+
264
+ if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
265
+ raise ValueError(
266
+ f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
267
+ )
268
+
269
+ # input
270
+ conv_in_padding = (conv_in_kernel - 1) // 2
271
+ self.conv_in = nn.Conv2d(
272
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
273
+ )
274
+
275
+ # time
276
+ if time_embedding_type == "fourier":
277
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
278
+ if time_embed_dim % 2 != 0:
279
+ raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
280
+ self.time_proj = GaussianFourierProjection(
281
+ time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
282
+ )
283
+ timestep_input_dim = time_embed_dim
284
+ elif time_embedding_type == "positional":
285
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
286
+
287
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
288
+ timestep_input_dim = block_out_channels[0]
289
+ else:
290
+ raise ValueError(
291
+ f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
292
+ )
293
+
294
+ self.time_embedding = TimestepEmbedding(
295
+ timestep_input_dim,
296
+ time_embed_dim,
297
+ act_fn=act_fn,
298
+ post_act_fn=timestep_post_act,
299
+ cond_proj_dim=time_cond_proj_dim,
300
+ )
301
+
302
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
303
+ encoder_hid_dim_type = "text_proj"
304
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
305
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
306
+
307
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
308
+ raise ValueError(
309
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
310
+ )
311
+
312
+ if encoder_hid_dim_type == "text_proj":
313
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
314
+ elif encoder_hid_dim_type == "text_image_proj":
315
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
316
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
317
+ # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
318
+ self.encoder_hid_proj = TextImageProjection(
319
+ text_embed_dim=encoder_hid_dim,
320
+ image_embed_dim=cross_attention_dim,
321
+ cross_attention_dim=cross_attention_dim,
322
+ )
323
+ elif encoder_hid_dim_type == "image_proj":
324
+ # Kandinsky 2.2
325
+ self.encoder_hid_proj = ImageProjection(
326
+ image_embed_dim=encoder_hid_dim,
327
+ cross_attention_dim=cross_attention_dim,
328
+ )
329
+ elif encoder_hid_dim_type is not None:
330
+ raise ValueError(
331
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
332
+ )
333
+ else:
334
+ self.encoder_hid_proj = None
335
+
336
+ # class embedding
337
+ if class_embed_type is None and num_class_embeds is not None:
338
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
339
+ elif class_embed_type == "timestep":
340
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
341
+ elif class_embed_type == "identity":
342
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
343
+ elif class_embed_type == "projection":
344
+ if projection_class_embeddings_input_dim is None:
345
+ raise ValueError(
346
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
347
+ )
348
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
349
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
350
+ # 2. it projects from an arbitrary input dimension.
351
+ #
352
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
353
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
354
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
355
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
356
+ elif class_embed_type == "simple_projection":
357
+ if projection_class_embeddings_input_dim is None:
358
+ raise ValueError(
359
+ "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
360
+ )
361
+ self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
362
+ else:
363
+ self.class_embedding = None
364
+
365
+ if addition_embed_type == "text":
366
+ if encoder_hid_dim is not None:
367
+ text_time_embedding_from_dim = encoder_hid_dim
368
+ else:
369
+ text_time_embedding_from_dim = cross_attention_dim
370
+
371
+ self.add_embedding = TextTimeEmbedding(
372
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
373
+ )
374
+ elif addition_embed_type == "text_image":
375
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
376
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
377
+ # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
378
+ self.add_embedding = TextImageTimeEmbedding(
379
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
380
+ )
381
+ elif addition_embed_type == "text_time":
382
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
383
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
384
+ elif addition_embed_type == "image":
385
+ # Kandinsky 2.2
386
+ self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
387
+ elif addition_embed_type == "image_hint":
388
+ # Kandinsky 2.2 ControlNet
389
+ self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
390
+ elif addition_embed_type is not None:
391
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
392
+
393
+ if time_embedding_act_fn is None:
394
+ self.time_embed_act = None
395
+ else:
396
+ self.time_embed_act = get_activation(time_embedding_act_fn)
397
+
398
+ self.down_blocks = nn.ModuleList([])
399
+ self.up_blocks = nn.ModuleList([])
400
+
401
+ if isinstance(only_cross_attention, bool):
402
+ if mid_block_only_cross_attention is None:
403
+ mid_block_only_cross_attention = only_cross_attention
404
+
405
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
406
+
407
+ if mid_block_only_cross_attention is None:
408
+ mid_block_only_cross_attention = False
409
+
410
+ if isinstance(num_attention_heads, int):
411
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
412
+
413
+ if isinstance(attention_head_dim, int):
414
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
415
+
416
+ if isinstance(cross_attention_dim, int):
417
+ cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
418
+
419
+ if isinstance(layers_per_block, int):
420
+ layers_per_block = [layers_per_block] * len(down_block_types)
421
+
422
+ if isinstance(transformer_layers_per_block, int):
423
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
424
+
425
+ if class_embeddings_concat:
426
+ # The time embeddings are concatenated with the class embeddings. The dimension of the
427
+ # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
428
+ # regular time embeddings
429
+ blocks_time_embed_dim = time_embed_dim * 2
430
+ else:
431
+ blocks_time_embed_dim = time_embed_dim
432
+
433
+ # down
434
+ output_channel = block_out_channels[0]
435
+ for i, down_block_type in enumerate(down_block_types):
436
+ input_channel = output_channel
437
+ output_channel = block_out_channels[i]
438
+ is_final_block = i == len(block_out_channels) - 1
439
+
440
+ down_block = get_down_block(
441
+ down_block_type,
442
+ num_layers=layers_per_block[i],
443
+ transformer_layers_per_block=transformer_layers_per_block[i],
444
+ in_channels=input_channel,
445
+ out_channels=output_channel,
446
+ temb_channels=blocks_time_embed_dim,
447
+ add_downsample=not is_final_block,
448
+ resnet_eps=norm_eps,
449
+ resnet_act_fn=act_fn,
450
+ resnet_groups=norm_num_groups,
451
+ cross_attention_dim=cross_attention_dim[i],
452
+ num_attention_heads=num_attention_heads[i],
453
+ downsample_padding=downsample_padding,
454
+ dual_cross_attention=dual_cross_attention,
455
+ use_linear_projection=use_linear_projection,
456
+ only_cross_attention=only_cross_attention[i],
457
+ upcast_attention=upcast_attention,
458
+ resnet_time_scale_shift=resnet_time_scale_shift,
459
+ attention_type=attention_type,
460
+ resnet_skip_time_act=resnet_skip_time_act,
461
+ resnet_out_scale_factor=resnet_out_scale_factor,
462
+ cross_attention_norm=cross_attention_norm,
463
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
464
+ dropout=dropout,
465
+ )
466
+ self.down_blocks.append(down_block)
467
+
468
+ # mid
469
+ if mid_block_type == "UNetMidBlock2DCrossAttn":
470
+ self.mid_block = UNetMidBlock2DCrossAttn(
471
+ transformer_layers_per_block=transformer_layers_per_block[-1],
472
+ in_channels=block_out_channels[-1],
473
+ temb_channels=blocks_time_embed_dim,
474
+ dropout=dropout,
475
+ resnet_eps=norm_eps,
476
+ resnet_act_fn=act_fn,
477
+ output_scale_factor=mid_block_scale_factor,
478
+ resnet_time_scale_shift=resnet_time_scale_shift,
479
+ cross_attention_dim=cross_attention_dim[-1],
480
+ num_attention_heads=num_attention_heads[-1],
481
+ resnet_groups=norm_num_groups,
482
+ dual_cross_attention=dual_cross_attention,
483
+ use_linear_projection=use_linear_projection,
484
+ upcast_attention=upcast_attention,
485
+ attention_type=attention_type,
486
+ )
487
+ elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
488
+ self.mid_block = UNetMidBlock2DSimpleCrossAttn(
489
+ in_channels=block_out_channels[-1],
490
+ temb_channels=blocks_time_embed_dim,
491
+ dropout=dropout,
492
+ resnet_eps=norm_eps,
493
+ resnet_act_fn=act_fn,
494
+ output_scale_factor=mid_block_scale_factor,
495
+ cross_attention_dim=cross_attention_dim[-1],
496
+ attention_head_dim=attention_head_dim[-1],
497
+ resnet_groups=norm_num_groups,
498
+ resnet_time_scale_shift=resnet_time_scale_shift,
499
+ skip_time_act=resnet_skip_time_act,
500
+ only_cross_attention=mid_block_only_cross_attention,
501
+ cross_attention_norm=cross_attention_norm,
502
+ )
503
+ elif mid_block_type is None:
504
+ self.mid_block = None
505
+ else:
506
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
507
+
508
+ # count how many layers upsample the images
509
+ self.num_upsamplers = 0
510
+
511
+ # up
512
+ reversed_block_out_channels = list(reversed(block_out_channels))
513
+ reversed_num_attention_heads = list(reversed(num_attention_heads))
514
+ reversed_layers_per_block = list(reversed(layers_per_block))
515
+ reversed_cross_attention_dim = list(reversed(cross_attention_dim))
516
+ reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
517
+ only_cross_attention = list(reversed(only_cross_attention))
518
+
519
+ output_channel = reversed_block_out_channels[0]
520
+ for i, up_block_type in enumerate(up_block_types):
521
+ is_final_block = i == len(block_out_channels) - 1
522
+
523
+ prev_output_channel = output_channel
524
+ output_channel = reversed_block_out_channels[i]
525
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
526
+
527
+ # add upsample block for all BUT final layer
528
+ if not is_final_block:
529
+ add_upsample = True
530
+ self.num_upsamplers += 1
531
+ else:
532
+ add_upsample = False
533
+
534
+ up_block = get_up_block(
535
+ up_block_type,
536
+ num_layers=reversed_layers_per_block[i] + 1,
537
+ transformer_layers_per_block=reversed_transformer_layers_per_block[i],
538
+ in_channels=input_channel,
539
+ out_channels=output_channel,
540
+ prev_output_channel=prev_output_channel,
541
+ temb_channels=blocks_time_embed_dim,
542
+ add_upsample=add_upsample,
543
+ resnet_eps=norm_eps,
544
+ resnet_act_fn=act_fn,
545
+ resolution_idx=i,
546
+ resnet_groups=norm_num_groups,
547
+ cross_attention_dim=reversed_cross_attention_dim[i],
548
+ num_attention_heads=reversed_num_attention_heads[i],
549
+ dual_cross_attention=dual_cross_attention,
550
+ use_linear_projection=use_linear_projection,
551
+ only_cross_attention=only_cross_attention[i],
552
+ upcast_attention=upcast_attention,
553
+ resnet_time_scale_shift=resnet_time_scale_shift,
554
+ attention_type=attention_type,
555
+ resnet_skip_time_act=resnet_skip_time_act,
556
+ resnet_out_scale_factor=resnet_out_scale_factor,
557
+ cross_attention_norm=cross_attention_norm,
558
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
559
+ dropout=dropout,
560
+ )
561
+ self.up_blocks.append(up_block)
562
+ prev_output_channel = output_channel
563
+
564
+ # out
565
+ if norm_num_groups is not None:
566
+ self.conv_norm_out = nn.GroupNorm(
567
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
568
+ )
569
+
570
+ self.conv_act = get_activation(act_fn)
571
+
572
+ else:
573
+ self.conv_norm_out = None
574
+ self.conv_act = None
575
+
576
+ conv_out_padding = (conv_out_kernel - 1) // 2
577
+ self.conv_out = nn.Conv2d(
578
+ block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
579
+ )
580
+
581
+ if attention_type in ["gated", "gated-text-image"]:
582
+ positive_len = 768
583
+ if isinstance(cross_attention_dim, int):
584
+ positive_len = cross_attention_dim
585
+ elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
586
+ positive_len = cross_attention_dim[0]
587
+
588
+ feature_type = "text-only" if attention_type == "gated" else "text-image"
589
+ self.position_net = PositionNet(
590
+ positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
591
+ )
592
+
593
+ @property
594
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
595
+ r"""
596
+ Returns:
597
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
598
+ indexed by its weight name.
599
+ """
600
+ # set recursively
601
+ processors = {}
602
+
603
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
604
+ if hasattr(module, "get_processor"):
605
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
606
+
607
+ for sub_name, child in module.named_children():
608
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
609
+
610
+ return processors
611
+
612
+ for name, module in self.named_children():
613
+ fn_recursive_add_processors(name, module, processors)
614
+
615
+ return processors
616
+
617
+ def set_attn_processor(
618
+ self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
619
+ ):
620
+ r"""
621
+ Sets the attention processor to use to compute attention.
622
+
623
+ Parameters:
624
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
625
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
626
+ for **all** `Attention` layers.
627
+
628
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
629
+ processor. This is strongly recommended when setting trainable attention processors.
630
+
631
+ """
632
+ count = len(self.attn_processors.keys())
633
+
634
+ if isinstance(processor, dict) and len(processor) != count:
635
+ raise ValueError(
636
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
637
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
638
+ )
639
+
640
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
641
+ if hasattr(module, "set_processor"):
642
+ if not isinstance(processor, dict):
643
+ module.set_processor(processor, _remove_lora=_remove_lora)
644
+ else:
645
+ module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
646
+
647
+ for sub_name, child in module.named_children():
648
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
649
+
650
+ for name, module in self.named_children():
651
+ fn_recursive_attn_processor(name, module, processor)
652
+
653
+ def set_default_attn_processor(self):
654
+ """
655
+ Disables custom attention processors and sets the default attention implementation.
656
+ """
657
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
658
+ processor = AttnAddedKVProcessor()
659
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
660
+ processor = AttnProcessor()
661
+ else:
662
+ raise ValueError(
663
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
664
+ )
665
+
666
+ self.set_attn_processor(processor, _remove_lora=True)
667
+
668
+ def set_attention_slice(self, slice_size):
669
+ r"""
670
+ Enable sliced attention computation.
671
+
672
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
673
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
674
+
675
+ Args:
676
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
677
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
678
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
679
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
680
+ must be a multiple of `slice_size`.
681
+ """
682
+ sliceable_head_dims = []
683
+
684
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
685
+ if hasattr(module, "set_attention_slice"):
686
+ sliceable_head_dims.append(module.sliceable_head_dim)
687
+
688
+ for child in module.children():
689
+ fn_recursive_retrieve_sliceable_dims(child)
690
+
691
+ # retrieve number of attention layers
692
+ for module in self.children():
693
+ fn_recursive_retrieve_sliceable_dims(module)
694
+
695
+ num_sliceable_layers = len(sliceable_head_dims)
696
+
697
+ if slice_size == "auto":
698
+ # half the attention head size is usually a good trade-off between
699
+ # speed and memory
700
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
701
+ elif slice_size == "max":
702
+ # make smallest slice possible
703
+ slice_size = num_sliceable_layers * [1]
704
+
705
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
706
+
707
+ if len(slice_size) != len(sliceable_head_dims):
708
+ raise ValueError(
709
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
710
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
711
+ )
712
+
713
+ for i in range(len(slice_size)):
714
+ size = slice_size[i]
715
+ dim = sliceable_head_dims[i]
716
+ if size is not None and size > dim:
717
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
718
+
719
+ # Recursively walk through all the children.
720
+ # Any children which exposes the set_attention_slice method
721
+ # gets the message
722
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
723
+ if hasattr(module, "set_attention_slice"):
724
+ module.set_attention_slice(slice_size.pop())
725
+
726
+ for child in module.children():
727
+ fn_recursive_set_attention_slice(child, slice_size)
728
+
729
+ reversed_slice_size = list(reversed(slice_size))
730
+ for module in self.children():
731
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
732
+
733
+ def _set_gradient_checkpointing(self, module, value=False):
734
+ if hasattr(module, "gradient_checkpointing"):
735
+ module.gradient_checkpointing = value
736
+
737
+ def enable_freeu(self, s1, s2, b1, b2):
738
+ r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
739
+
740
+ The suffixes after the scaling factors represent the stage blocks where they are being applied.
741
+
742
+ Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
743
+ are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
744
+
745
+ Args:
746
+ s1 (`float`):
747
+ Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
748
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
749
+ s2 (`float`):
750
+ Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
751
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
752
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
753
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
754
+ """
755
+ for i, upsample_block in enumerate(self.up_blocks):
756
+ setattr(upsample_block, "s1", s1)
757
+ setattr(upsample_block, "s2", s2)
758
+ setattr(upsample_block, "b1", b1)
759
+ setattr(upsample_block, "b2", b2)
760
+
761
+ def disable_freeu(self):
762
+ """Disables the FreeU mechanism."""
763
+ freeu_keys = {"s1", "s2", "b1", "b2"}
764
+ for i, upsample_block in enumerate(self.up_blocks):
765
+ for k in freeu_keys:
766
+ if hasattr(upsample_block, k) or getattr(upsample_block, k) is not None:
767
+ setattr(upsample_block, k, None)
768
+
769
+ def forward(
770
+ self,
771
+ sample: torch.FloatTensor,
772
+ timestep: Union[torch.Tensor, float, int],
773
+ encoder_hidden_states: torch.Tensor,
774
+ class_labels: Optional[torch.Tensor] = None,
775
+ timestep_cond: Optional[torch.Tensor] = None,
776
+ attention_mask: Optional[torch.Tensor] = None,
777
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
778
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
779
+ down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
780
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
781
+ down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
782
+ encoder_attention_mask: Optional[torch.Tensor] = None,
783
+ return_dict: bool = True,
784
+ ) -> Union[UNet2DConditionOutput, Tuple]:
785
+ r"""
786
+ The [`MyUNetModel`] forward method.
787
+
788
+ Args:
789
+ sample (`torch.FloatTensor`):
790
+ The noisy input tensor with the following shape `(batch, channel, height, width)`.
791
+ timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
792
+ encoder_hidden_states (`torch.FloatTensor`):
793
+ The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
794
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
795
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
796
+ timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
797
+ Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
798
+ through the `self.time_embedding` layer to obtain the timestep embeddings.
799
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
800
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
801
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
802
+ negative values to the attention scores corresponding to "discard" tokens.
803
+ cross_attention_kwargs (`dict`, *optional*):
804
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
805
+ `self.processor` in
806
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
807
+ added_cond_kwargs: (`dict`, *optional*):
808
+ A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
809
+ are passed along to the UNet blocks.
810
+ down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
811
+ A tuple of tensors that if specified are added to the residuals of down unet blocks.
812
+ mid_block_additional_residual: (`torch.Tensor`, *optional*):
813
+ A tensor that if specified is added to the residual of the middle unet block.
814
+ encoder_attention_mask (`torch.Tensor`):
815
+ A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
816
+ `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
817
+ which adds large negative values to the attention scores corresponding to "discard" tokens.
818
+ return_dict (`bool`, *optional*, defaults to `True`):
819
+ Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
820
+ tuple.
821
+ cross_attention_kwargs (`dict`, *optional*):
822
+ A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
823
+ added_cond_kwargs: (`dict`, *optional*):
824
+ A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
825
+ are passed along to the UNet blocks.
826
+ down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
827
+ additional residuals to be added to UNet long skip connections from down blocks to up blocks for
828
+ example from ControlNet side model(s)
829
+ mid_block_additional_residual (`torch.Tensor`, *optional*):
830
+ additional residual to be added to UNet mid block output, for example from ControlNet side model
831
+ down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
832
+ additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
833
+
834
+ Returns:
835
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
836
+ If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
837
+ a `tuple` is returned where the first element is the sample tensor.
838
+ """
839
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
840
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
841
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
842
+ # on the fly if necessary.
843
+ default_overall_up_factor = 2**self.num_upsamplers
844
+
845
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
846
+ forward_upsample_size = False
847
+ upsample_size = None
848
+
849
+ if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
850
+ # Forward upsample size to force interpolation output size.
851
+ forward_upsample_size = True
852
+
853
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
854
+ # expects mask of shape:
855
+ # [batch, key_tokens]
856
+ # adds singleton query_tokens dimension:
857
+ # [batch, 1, key_tokens]
858
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
859
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
860
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
861
+ if attention_mask is not None:
862
+ # assume that mask is expressed as:
863
+ # (1 = keep, 0 = discard)
864
+ # convert mask into a bias that can be added to attention scores:
865
+ # (keep = +0, discard = -10000.0)
866
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
867
+ attention_mask = attention_mask.unsqueeze(1)
868
+
869
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
870
+ if encoder_attention_mask is not None:
871
+ encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
872
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
873
+
874
+ # 0. center input if necessary
875
+ if self.config.center_input_sample:
876
+ sample = 2 * sample - 1.0
877
+
878
+ # 1. time
879
+ timesteps = timestep
880
+ if not torch.is_tensor(timesteps):
881
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
882
+ # This would be a good case for the `match` statement (Python 3.10+)
883
+ is_mps = sample.device.type == "mps"
884
+ if isinstance(timestep, float):
885
+ dtype = torch.float32 if is_mps else torch.float64
886
+ else:
887
+ dtype = torch.int32 if is_mps else torch.int64
888
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
889
+ elif len(timesteps.shape) == 0:
890
+ timesteps = timesteps[None].to(sample.device)
891
+
892
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
893
+ timesteps = timesteps.expand(sample.shape[0])
894
+
895
+ t_emb = self.time_proj(timesteps)
896
+
897
+ # `Timesteps` does not contain any weights and will always return f32 tensors
898
+ # but time_embedding might actually be running in fp16. so we need to cast here.
899
+ # there might be better ways to encapsulate this.
900
+ t_emb = t_emb.to(dtype=sample.dtype)
901
+
902
+ emb = self.time_embedding(t_emb, timestep_cond)
903
+ aug_emb = None
904
+
905
+ if self.class_embedding is not None:
906
+ if class_labels is None:
907
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
908
+
909
+ if self.config.class_embed_type == "timestep":
910
+ class_labels = self.time_proj(class_labels)
911
+
912
+ # `Timesteps` does not contain any weights and will always return f32 tensors
913
+ # there might be better ways to encapsulate this.
914
+ class_labels = class_labels.to(dtype=sample.dtype)
915
+
916
+ class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
917
+
918
+ if self.config.class_embeddings_concat:
919
+ emb = torch.cat([emb, class_emb], dim=-1)
920
+ else:
921
+ emb = emb + class_emb
922
+
923
+ if self.config.addition_embed_type == "text":
924
+ aug_emb = self.add_embedding(encoder_hidden_states)
925
+ elif self.config.addition_embed_type == "text_image":
926
+ # Kandinsky 2.1 - style
927
+ if "image_embeds" not in added_cond_kwargs:
928
+ raise ValueError(
929
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
930
+ )
931
+
932
+ image_embs = added_cond_kwargs.get("image_embeds")
933
+ text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
934
+ aug_emb = self.add_embedding(text_embs, image_embs)
935
+ elif self.config.addition_embed_type == "text_time":
936
+ # SDXL - style
937
+ if "text_embeds" not in added_cond_kwargs:
938
+ raise ValueError(
939
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
940
+ )
941
+ text_embeds = added_cond_kwargs.get("text_embeds")
942
+ if "time_ids" not in added_cond_kwargs:
943
+ raise ValueError(
944
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
945
+ )
946
+ time_ids = added_cond_kwargs.get("time_ids")
947
+ time_embeds = self.add_time_proj(time_ids.flatten())
948
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
949
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
950
+ add_embeds = add_embeds.to(emb.dtype)
951
+ aug_emb = self.add_embedding(add_embeds)
952
+ elif self.config.addition_embed_type == "image":
953
+ # Kandinsky 2.2 - style
954
+ if "image_embeds" not in added_cond_kwargs:
955
+ raise ValueError(
956
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
957
+ )
958
+ image_embs = added_cond_kwargs.get("image_embeds")
959
+ aug_emb = self.add_embedding(image_embs)
960
+ elif self.config.addition_embed_type == "image_hint":
961
+ # Kandinsky 2.2 - style
962
+ if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
963
+ raise ValueError(
964
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
965
+ )
966
+ image_embs = added_cond_kwargs.get("image_embeds")
967
+ hint = added_cond_kwargs.get("hint")
968
+ aug_emb, hint = self.add_embedding(image_embs, hint)
969
+ sample = torch.cat([sample, hint], dim=1)
970
+
971
+ emb = emb + aug_emb if aug_emb is not None else emb
972
+
973
+ if self.time_embed_act is not None:
974
+ emb = self.time_embed_act(emb)
975
+
976
+ if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
977
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
978
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
979
+ # Kadinsky 2.1 - style
980
+ if "image_embeds" not in added_cond_kwargs:
981
+ raise ValueError(
982
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
983
+ )
984
+
985
+ image_embeds = added_cond_kwargs.get("image_embeds")
986
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
987
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
988
+ # Kandinsky 2.2 - style
989
+ if "image_embeds" not in added_cond_kwargs:
990
+ raise ValueError(
991
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
992
+ )
993
+ image_embeds = added_cond_kwargs.get("image_embeds")
994
+ encoder_hidden_states = self.encoder_hid_proj(image_embeds)
995
+ # 2. pre-process
996
+ sample = self.conv_in(sample)
997
+
998
+ # 2.5 GLIGEN position net
999
+ if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
1000
+ cross_attention_kwargs = cross_attention_kwargs.copy()
1001
+ gligen_args = cross_attention_kwargs.pop("gligen")
1002
+ cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
1003
+
1004
+ # 3. down
1005
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
1006
+ if USE_PEFT_BACKEND:
1007
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
1008
+ scale_lora_layers(self, lora_scale)
1009
+
1010
+ is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
1011
+ # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
1012
+ is_adapter = down_intrablock_additional_residuals is not None
1013
+ # maintain backward compatibility for legacy usage, where
1014
+ # T2I-Adapter and ControlNet both use down_block_additional_residuals arg
1015
+ # but can only use one or the other
1016
+ if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
1017
+ deprecate(
1018
+ "T2I should not use down_block_additional_residuals",
1019
+ "1.3.0",
1020
+ "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
1021
+ and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
1022
+ for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
1023
+ standard_warn=False,
1024
+ )
1025
+ down_intrablock_additional_residuals = down_block_additional_residuals
1026
+ is_adapter = True
1027
+
1028
+ down_block_res_samples = (sample,)
1029
+ for downsample_block in self.down_blocks:
1030
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
1031
+ # For t2i-adapter CrossAttnDownBlock2D
1032
+ additional_residuals = {}
1033
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
1034
+ additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
1035
+
1036
+ sample, res_samples = downsample_block(
1037
+ hidden_states=sample,
1038
+ temb=emb,
1039
+ encoder_hidden_states=encoder_hidden_states,
1040
+ attention_mask=attention_mask,
1041
+ cross_attention_kwargs=cross_attention_kwargs,
1042
+ encoder_attention_mask=encoder_attention_mask,
1043
+ **additional_residuals,
1044
+ )
1045
+ else:
1046
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
1047
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
1048
+ sample += down_intrablock_additional_residuals.pop(0)
1049
+
1050
+ down_block_res_samples += res_samples
1051
+
1052
+ if is_controlnet:
1053
+ new_down_block_res_samples = ()
1054
+
1055
+ for down_block_res_sample, down_block_additional_residual in zip(
1056
+ down_block_res_samples, down_block_additional_residuals
1057
+ ):
1058
+ down_block_res_sample = down_block_res_sample + down_block_additional_residual
1059
+ new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
1060
+
1061
+ down_block_res_samples = new_down_block_res_samples
1062
+
1063
+ # 4. mid
1064
+ if self.mid_block is not None:
1065
+ sample = self.mid_block(
1066
+ sample,
1067
+ emb,
1068
+ encoder_hidden_states=encoder_hidden_states,
1069
+ attention_mask=attention_mask,
1070
+ cross_attention_kwargs=cross_attention_kwargs,
1071
+ encoder_attention_mask=encoder_attention_mask,
1072
+ )
1073
+ # To support T2I-Adapter-XL
1074
+ if (
1075
+ is_adapter
1076
+ and len(down_intrablock_additional_residuals) > 0
1077
+ and sample.shape == down_intrablock_additional_residuals[0].shape
1078
+ ):
1079
+ sample += down_intrablock_additional_residuals.pop(0)
1080
+
1081
+ if is_controlnet:
1082
+ sample = sample + mid_block_additional_residual
1083
+
1084
+ # 5. up
1085
+ for i, upsample_block in enumerate(self.up_blocks):
1086
+ is_final_block = i == len(self.up_blocks) - 1
1087
+
1088
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
1089
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
1090
+
1091
+ # if we have not reached the final block and need to forward the
1092
+ # upsample size, we do it here
1093
+ if not is_final_block and forward_upsample_size:
1094
+ upsample_size = down_block_res_samples[-1].shape[2:]
1095
+
1096
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
1097
+ sample = upsample_block(
1098
+ hidden_states=sample,
1099
+ temb=emb,
1100
+ res_hidden_states_tuple=res_samples,
1101
+ encoder_hidden_states=encoder_hidden_states,
1102
+ cross_attention_kwargs=cross_attention_kwargs,
1103
+ upsample_size=upsample_size,
1104
+ attention_mask=attention_mask,
1105
+ encoder_attention_mask=encoder_attention_mask,
1106
+ )
1107
+ else:
1108
+ sample = upsample_block(
1109
+ hidden_states=sample,
1110
+ temb=emb,
1111
+ res_hidden_states_tuple=res_samples,
1112
+ upsample_size=upsample_size,
1113
+ scale=lora_scale,
1114
+ )
1115
+
1116
+ # 6. post-process
1117
+ if self.conv_norm_out:
1118
+ sample = self.conv_norm_out(sample)
1119
+ sample = self.conv_act(sample)
1120
+ sample = self.conv_out(sample)
1121
+
1122
+ if USE_PEFT_BACKEND:
1123
+ # remove `lora_scale` from each PEFT layer
1124
+ unscale_lora_layers(self)
1125
+
1126
+ if not return_dict:
1127
+ return (sample,)
1128
+
1129
+ return UNet2DConditionOutput(sample=sample)