This is a re-trained 3-layer RoBERTa-wwm-ext model.
Chinese BERT with Whole Word Masking
For further accelerating Chinese natural language processing, we provide Chinese pre-trained BERT with Whole Word Masking.
Pre-Training with Whole Word Masking for Chinese BERT
Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
This repository is developed based onοΌhttps://github.com/google-research/bert
You may also interested in,
- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
- Chinese MacBERT: https://github.com/ymcui/MacBERT
- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
More resources by HFL: https://github.com/ymcui/HFL-Anthology
Citation
If you find the technical report or resource is useful, please cite the following technical report in your paper.
- Primary: https://arxiv.org/abs/2004.13922
@inproceedings{cui-etal-2020-revisiting,
title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
author = "Cui, Yiming and
Che, Wanxiang and
Liu, Ting and
Qin, Bing and
Wang, Shijin and
Hu, Guoping",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
pages = "657--668",
}
- Secondary: https://arxiv.org/abs/1906.08101
@article{chinese-bert-wwm,
title={Pre-Training with Whole Word Masking for Chinese BERT},
author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
journal={arXiv preprint arXiv:1906.08101},
year={2019}
}
- Downloads last month
- 7,288
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.