hilmansw's picture
Update README.md
486d6c0
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: en-US
          split: train
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.45
pipeline_tag: image-classification

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4084
  • Accuracy: 0.45

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.8332 0.3375
No log 2.0 80 1.5977 0.3438
No log 3.0 120 1.4988 0.45
No log 4.0 160 1.4639 0.4437
No log 5.0 200 1.4292 0.4188
No log 6.0 240 1.4092 0.4625
No log 7.0 280 1.3667 0.45
No log 8.0 320 1.3967 0.4313
No log 9.0 360 1.3820 0.5062
No log 10.0 400 1.3740 0.4938

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3