|
---
|
|
library_name: hivex
|
|
original_train_name: AerialWildfireSuppression_difficulty_4_task_7_run_id_2_train
|
|
tags:
|
|
- hivex
|
|
- hivex-aerial-wildfire-suppression
|
|
- reinforcement-learning
|
|
- multi-agent-reinforcement-learning
|
|
model-index:
|
|
- name: hivex-AWS-PPO-baseline-task-7-difficulty-4
|
|
results:
|
|
- task:
|
|
type: sub-task
|
|
name: find_fire
|
|
task-id: 7
|
|
difficulty-id: 4
|
|
dataset:
|
|
name: hivex-aerial-wildfire-suppression
|
|
type: hivex-aerial-wildfire-suppression
|
|
metrics:
|
|
- type: crash_count
|
|
value: 0.10086543383076788 +/- 0.10339308792925168
|
|
name: Crash Count
|
|
verified: true
|
|
- type: cumulative_reward
|
|
value: 74.68694515228272 +/- 39.010904385486974
|
|
name: Cumulative Reward
|
|
verified: true
|
|
---
|
|
|
|
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>7</code> with difficulty <code>4</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
|
|
|
|
Environment: **Aerial Wildfire Suppression**<br>
|
|
Task: <code>7</code><br>
|
|
Difficulty: <code>4</code><br>
|
|
Algorithm: <code>PPO</code><br>
|
|
Episode Length: <code>3000</code><br>
|
|
Training <code>max_steps</code>: <code>1800000</code><br>
|
|
Testing <code>max_steps</code>: <code>180000</code><br><br>
|
|
|
|
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
|
|
Download the [Environment](https://github.com/hivex-research/hivex-environments) |