|
---
|
|
library_name: hivex
|
|
original_train_name: AerialWildfireSuppression_difficulty_8_task_8_run_id_1_train
|
|
tags:
|
|
- hivex
|
|
- hivex-aerial-wildfire-suppression
|
|
- reinforcement-learning
|
|
- multi-agent-reinforcement-learning
|
|
model-index:
|
|
- name: hivex-AWS-PPO-baseline-task-8-difficulty-8
|
|
results:
|
|
- task:
|
|
type: sub-task
|
|
name: find_village
|
|
task-id: 8
|
|
difficulty-id: 8
|
|
dataset:
|
|
name: hivex-aerial-wildfire-suppression
|
|
type: hivex-aerial-wildfire-suppression
|
|
metrics:
|
|
- type: crash_count
|
|
value: 0.07833333536982537 +/- 0.12660792045593888
|
|
name: Crash Count
|
|
verified: true
|
|
- type: cumulative_reward
|
|
value: 30.990195941925048 +/- 44.5910033782468
|
|
name: Cumulative Reward
|
|
verified: true
|
|
---
|
|
|
|
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>8</code> with difficulty <code>8</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
|
|
|
|
Environment: **Aerial Wildfire Suppression**<br>
|
|
Task: <code>8</code><br>
|
|
Difficulty: <code>8</code><br>
|
|
Algorithm: <code>PPO</code><br>
|
|
Episode Length: <code>3000</code><br>
|
|
Training <code>max_steps</code>: <code>1800000</code><br>
|
|
Testing <code>max_steps</code>: <code>180000</code><br><br>
|
|
|
|
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
|
|
Download the [Environment](https://github.com/hivex-research/hivex-environments) |