|
---
|
|
library_name: hivex
|
|
original_train_name: DroneBasedReforestation_difficulty_2_task_0_run_id_2_train
|
|
tags:
|
|
- hivex
|
|
- hivex-drone-based-reforestation
|
|
- reinforcement-learning
|
|
- multi-agent-reinforcement-learning
|
|
model-index:
|
|
- name: hivex-DBR-PPO-baseline-task-0-difficulty-2
|
|
results:
|
|
- task:
|
|
type: main-task
|
|
name: main_task
|
|
task-id: 0
|
|
difficulty-id: 2
|
|
dataset:
|
|
name: hivex-drone-based-reforestation
|
|
type: hivex-drone-based-reforestation
|
|
metrics:
|
|
- type: cumulative_distance_reward
|
|
value: 2.830362557172775 +/- 0.8731884646965687
|
|
name: Cumulative Distance Reward
|
|
verified: true
|
|
- type: cumulative_distance_until_tree_drop
|
|
value: 81.5349309539795 +/- 16.35440671615
|
|
name: Cumulative Distance Until Tree Drop
|
|
verified: true
|
|
- type: cumulative_distance_to_existing_trees
|
|
value: 51.15435367584229 +/- 11.396382191072137
|
|
name: Cumulative Distance to Existing Trees
|
|
verified: true
|
|
- type: cumulative_normalized_distance_until_tree_drop
|
|
value: 0.28303625583648684 +/- 0.0873188485354732
|
|
name: Cumulative Normalized Distance Until Tree Drop
|
|
verified: true
|
|
- type: cumulative_tree_drop_reward
|
|
value: 6.897729444503784 +/- 1.9902223153268046
|
|
name: Cumulative Tree Drop Reward
|
|
verified: true
|
|
- type: out_of_energy_count
|
|
value: 0.9944761908054351 +/- 0.023806801146583904
|
|
name: Out of Energy Count
|
|
verified: true
|
|
- type: recharge_energy_count
|
|
value: 9.503872995376588 +/- 0.6012074882399382
|
|
name: Recharge Energy Count
|
|
verified: true
|
|
- type: tree_drop_count
|
|
value: 0.9864761888980865 +/- 0.03546595715538237
|
|
name: Tree Drop Count
|
|
verified: true
|
|
- type: cumulative_reward
|
|
value: 9.817112922668457 +/- 2.8792400845989854
|
|
name: Cumulative Reward
|
|
verified: true
|
|
---
|
|
|
|
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>0</code> with difficulty <code>2</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>0</code><br>Difficulty: <code>2</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments) |