|
---
|
|
library_name: hivex
|
|
original_train_name: DroneBasedReforestation_difficulty_1_task_3_run_id_0_train
|
|
tags:
|
|
- hivex
|
|
- hivex-drone-based-reforestation
|
|
- reinforcement-learning
|
|
- multi-agent-reinforcement-learning
|
|
model-index:
|
|
- name: hivex-DBR-PPO-baseline-task-3-difficulty-1
|
|
results:
|
|
- task:
|
|
type: sub-task
|
|
name: drop_seed
|
|
task-id: 3
|
|
difficulty-id: 1
|
|
dataset:
|
|
name: hivex-drone-based-reforestation
|
|
type: hivex-drone-based-reforestation
|
|
metrics:
|
|
- type: cumulative_distance_reward
|
|
value: 1.1704939258098603 +/- 0.19094953820226412
|
|
name: Cumulative Distance Reward
|
|
verified: true
|
|
- type: cumulative_distance_until_tree_drop
|
|
value: 45.521212310791014 +/- 5.629736102757813
|
|
name: Cumulative Distance Until Tree Drop
|
|
verified: true
|
|
- type: cumulative_distance_to_existing_trees
|
|
value: 63.47206115722656 +/- 6.1461301353938405
|
|
name: Cumulative Distance to Existing Trees
|
|
verified: true
|
|
- type: cumulative_normalized_distance_until_tree_drop
|
|
value: 0.11704939216375351 +/- 0.019094953655432356
|
|
name: Cumulative Normalized Distance Until Tree Drop
|
|
verified: true
|
|
- type: cumulative_tree_drop_reward
|
|
value: 3.866243634223938 +/- 0.8022492017418626
|
|
name: Cumulative Tree Drop Reward
|
|
verified: true
|
|
- type: out_of_energy_count
|
|
value: 0.0493655932508409 +/- 0.028394293838768382
|
|
name: Out of Energy Count
|
|
verified: true
|
|
- type: recharge_energy_count
|
|
value: 10.92464771270752 +/- 0.6682069442874347
|
|
name: Recharge Energy Count
|
|
verified: true
|
|
- type: tree_drop_count
|
|
value: 0.9307654321193695 +/- 0.038764458231368655
|
|
name: Tree Drop Count
|
|
verified: true
|
|
- type: cumulative_reward
|
|
value: 99.16041168212891 +/- 4.422805341579576
|
|
name: Cumulative Reward
|
|
verified: true
|
|
---
|
|
|
|
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>3</code> with difficulty <code>1</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>3</code><br>Difficulty: <code>1</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments) |