File size: 1,459 Bytes
0b6555c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d0442
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
---
library_name: hivex
original_train_name: OceanPlasticCollection_task_1_run_id_0_train
tags:
- hivex
- hivex-ocean-plastic-collection
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-OPC-PPO-baseline-task-1
  results:
  - task:
      type: sub-task
      name: find_highest_polluted_area
      task-id: 1
    dataset:
      name: hivex-ocean-plastic-collection
      type: hivex-ocean-plastic-collection
    metrics:
    - type: cumulative_reward
      value: 994.6653747558594 +/- 158.13702190020126
      name: "Cumulative Reward"
      verified: true
    - type: global_reward
      value: 226.50474700927734 +/- 57.553598550844015
      name: "Global Reward"
      verified: true
    - type: local_reward
      value: 142.19907608032227 +/- 19.368785745326573
      name: "Local Reward"
      verified: true
---

This model serves as the baseline for the **Ocean Plastic Collection** environment, trained and tested on task <code>1</code> using the Proximal Policy Optimization (PPO) algorithm.<br>
<br>
Environment: **Ocean Plastic Collection**<br>
Task: <code>1</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>5000</code><br>
Training <code>max_steps</code>: <code>3000000</code><br>
Testing <code>max_steps</code>: <code>150000</code><br>
<br>
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments)