philippds's picture
Update README.md
ff4c5db verified
---
library_name: hivex
original_train_name: WildfireResourceManagement_difficulty_1_task_1_run_id_0_train
tags:
- hivex
- hivex-wildfire-resource-management
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-WRM-PPO-baseline-task-1-difficulty-1
results:
- task:
type: sub-task
name: keep_all
task-id: 1
difficulty-id: 1
dataset:
name: hivex-wildfire-resource-management
type: hivex-wildfire-resource-management
metrics:
- type: cumulative_reward
value: 195.4663185119629 +/- 77.65158484674649
name: Cumulative Reward
verified: true
- type: collective_performance
value: 34.28780403137207 +/- 10.980421619205345
name: Collective Performance
verified: true
- type: individual_performance
value: 16.798346424102782 +/- 5.2696319909880085
name: Individual Performance
verified: true
- type: reward_for_moving_resources_to_neighbours
value: 1.2929230749607086 +/- 0.5330753884066604
name: Reward for Moving Resources to Neighbours
verified: true
- type: reward_for_moving_resources_to_self
value: 143.07430686950684 +/- 44.849034918704156
name: Reward for Moving Resources to Self
verified: true
---
This model serves as the baseline for the **Wildfire Resource Management** environment, trained and tested on task <code>1</code> with difficulty <code>1</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
Environment: **Wildfire Resource Management**<br>
Task: <code>1</code><br>
Difficulty: <code>1</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>500</code><br>
Training <code>max_steps</code>: <code>450000</code><br>
Testing <code>max_steps</code>: <code>45000</code><br><br>
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments)