philippds's picture
Update README.md
b2f1df9 verified
---
library_name: hivex
original_train_name: WildfireResourceManagement_difficulty_9_task_1_run_id_2_train
tags:
- hivex
- hivex-wildfire-resource-management
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-WRM-PPO-baseline-task-1-difficulty-9
results:
- task:
type: sub-task
name: keep_all
task-id: 1
difficulty-id: 9
dataset:
name: hivex-wildfire-resource-management
type: hivex-wildfire-resource-management
metrics:
- type: cumulative_reward
value: 256.54253845214845 +/- 82.7350530070222
name: Cumulative Reward
verified: true
- type: collective_performance
value: 43.02604579925537 +/- 13.287361543787155
name: Collective Performance
verified: true
- type: individual_performance
value: 23.407614994049073 +/- 7.450801825115115
name: Individual Performance
verified: true
- type: reward_for_moving_resources_to_neighbours
value: 1.6655276775360108 +/- 0.5314602326491544
name: Reward for Moving Resources to Neighbours
verified: true
- type: reward_for_moving_resources_to_self
value: 197.1991439819336 +/- 65.86970427316282
name: Reward for Moving Resources to Self
verified: true
---
This model serves as the baseline for the **Wildfire Resource Management** environment, trained and tested on task <code>1</code> with difficulty <code>9</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
Environment: **Wildfire Resource Management**<br>
Task: <code>1</code><br>
Difficulty: <code>9</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>500</code><br>
Training <code>max_steps</code>: <code>450000</code><br>
Testing <code>max_steps</code>: <code>45000</code><br><br>
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments)