metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-multiclass-lang-en-base
results: []
whisper-multiclass-lang-en-base
This model is a fine-tuned version of openai/whisper-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1493
- Wer: 6.2678
- Cer: 4.3198
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.0286 | 4.5872 | 500 | 0.1880 | 10.4938 | 6.6816 |
0.0011 | 9.1743 | 1000 | 0.1529 | 7.6923 | 5.1185 |
0.0003 | 13.7615 | 1500 | 0.1525 | 7.1700 | 4.8523 |
0.0002 | 18.3486 | 2000 | 0.1510 | 7.0275 | 4.8695 |
0.0001 | 22.9358 | 2500 | 0.1505 | 6.7426 | 4.5946 |
0.0001 | 27.5229 | 3000 | 0.1499 | 6.6952 | 4.5861 |
0.0001 | 32.1101 | 3500 | 0.1496 | 6.4103 | 4.4143 |
0.0001 | 36.6972 | 4000 | 0.1495 | 6.5527 | 4.4830 |
0.0001 | 41.2844 | 4500 | 0.1493 | 6.3153 | 4.3456 |
0.0001 | 45.8716 | 5000 | 0.1493 | 6.2678 | 4.3198 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0