hkivancoral's picture
End of training
9c8d18f
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_base_adamax_001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5333333333333333

hushem_1x_deit_base_adamax_001_fold1

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 4.0186
  • Accuracy: 0.5333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5701 0.2444
1.7784 2.0 12 1.4475 0.2444
1.7784 3.0 18 1.5245 0.2444
1.3959 4.0 24 1.4708 0.4222
1.2593 5.0 30 1.4970 0.2889
1.2593 6.0 36 2.3855 0.2444
1.1884 7.0 42 1.0899 0.5333
1.1884 8.0 48 1.5303 0.3778
1.0528 9.0 54 1.8879 0.2667
0.9521 10.0 60 1.5051 0.3556
0.9521 11.0 66 1.7383 0.4222
0.832 12.0 72 1.4982 0.4667
0.832 13.0 78 2.2428 0.4222
0.6131 14.0 84 2.0924 0.4667
0.7375 15.0 90 1.9680 0.3778
0.7375 16.0 96 2.1272 0.4
0.3749 17.0 102 2.6064 0.4222
0.3749 18.0 108 3.2946 0.4
0.1952 19.0 114 3.4322 0.4
0.1436 20.0 120 3.6588 0.4222
0.1436 21.0 126 2.5255 0.4889
0.198 22.0 132 4.0901 0.3778
0.198 23.0 138 3.7265 0.4444
0.1826 24.0 144 2.5207 0.5333
0.0757 25.0 150 3.1947 0.4667
0.0757 26.0 156 2.8055 0.5333
0.0579 27.0 162 2.7690 0.5333
0.0579 28.0 168 3.0584 0.5333
0.0219 29.0 174 2.7699 0.6
0.0037 30.0 180 3.6076 0.5556
0.0037 31.0 186 4.1981 0.4667
0.0005 32.0 192 4.2123 0.5111
0.0005 33.0 198 4.1138 0.4889
0.0004 34.0 204 4.0577 0.5333
0.0002 35.0 210 4.0352 0.5333
0.0002 36.0 216 4.0255 0.5333
0.0002 37.0 222 4.0206 0.5333
0.0002 38.0 228 4.0191 0.5333
0.0001 39.0 234 4.0188 0.5333
0.0001 40.0 240 4.0186 0.5333
0.0001 41.0 246 4.0185 0.5333
0.0001 42.0 252 4.0186 0.5333
0.0001 43.0 258 4.0186 0.5333
0.0001 44.0 264 4.0186 0.5333
0.0001 45.0 270 4.0186 0.5333
0.0001 46.0 276 4.0186 0.5333
0.0001 47.0 282 4.0186 0.5333
0.0001 48.0 288 4.0186 0.5333
0.0001 49.0 294 4.0186 0.5333
0.0001 50.0 300 4.0186 0.5333

Framework versions

  • Transformers 4.35.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.7
  • Tokenizers 0.14.1