metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_base_adamax_001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.5333333333333333
hushem_1x_deit_base_adamax_001_fold1
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 4.0186
- Accuracy: 0.5333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.5701 | 0.2444 |
1.7784 | 2.0 | 12 | 1.4475 | 0.2444 |
1.7784 | 3.0 | 18 | 1.5245 | 0.2444 |
1.3959 | 4.0 | 24 | 1.4708 | 0.4222 |
1.2593 | 5.0 | 30 | 1.4970 | 0.2889 |
1.2593 | 6.0 | 36 | 2.3855 | 0.2444 |
1.1884 | 7.0 | 42 | 1.0899 | 0.5333 |
1.1884 | 8.0 | 48 | 1.5303 | 0.3778 |
1.0528 | 9.0 | 54 | 1.8879 | 0.2667 |
0.9521 | 10.0 | 60 | 1.5051 | 0.3556 |
0.9521 | 11.0 | 66 | 1.7383 | 0.4222 |
0.832 | 12.0 | 72 | 1.4982 | 0.4667 |
0.832 | 13.0 | 78 | 2.2428 | 0.4222 |
0.6131 | 14.0 | 84 | 2.0924 | 0.4667 |
0.7375 | 15.0 | 90 | 1.9680 | 0.3778 |
0.7375 | 16.0 | 96 | 2.1272 | 0.4 |
0.3749 | 17.0 | 102 | 2.6064 | 0.4222 |
0.3749 | 18.0 | 108 | 3.2946 | 0.4 |
0.1952 | 19.0 | 114 | 3.4322 | 0.4 |
0.1436 | 20.0 | 120 | 3.6588 | 0.4222 |
0.1436 | 21.0 | 126 | 2.5255 | 0.4889 |
0.198 | 22.0 | 132 | 4.0901 | 0.3778 |
0.198 | 23.0 | 138 | 3.7265 | 0.4444 |
0.1826 | 24.0 | 144 | 2.5207 | 0.5333 |
0.0757 | 25.0 | 150 | 3.1947 | 0.4667 |
0.0757 | 26.0 | 156 | 2.8055 | 0.5333 |
0.0579 | 27.0 | 162 | 2.7690 | 0.5333 |
0.0579 | 28.0 | 168 | 3.0584 | 0.5333 |
0.0219 | 29.0 | 174 | 2.7699 | 0.6 |
0.0037 | 30.0 | 180 | 3.6076 | 0.5556 |
0.0037 | 31.0 | 186 | 4.1981 | 0.4667 |
0.0005 | 32.0 | 192 | 4.2123 | 0.5111 |
0.0005 | 33.0 | 198 | 4.1138 | 0.4889 |
0.0004 | 34.0 | 204 | 4.0577 | 0.5333 |
0.0002 | 35.0 | 210 | 4.0352 | 0.5333 |
0.0002 | 36.0 | 216 | 4.0255 | 0.5333 |
0.0002 | 37.0 | 222 | 4.0206 | 0.5333 |
0.0002 | 38.0 | 228 | 4.0191 | 0.5333 |
0.0001 | 39.0 | 234 | 4.0188 | 0.5333 |
0.0001 | 40.0 | 240 | 4.0186 | 0.5333 |
0.0001 | 41.0 | 246 | 4.0185 | 0.5333 |
0.0001 | 42.0 | 252 | 4.0186 | 0.5333 |
0.0001 | 43.0 | 258 | 4.0186 | 0.5333 |
0.0001 | 44.0 | 264 | 4.0186 | 0.5333 |
0.0001 | 45.0 | 270 | 4.0186 | 0.5333 |
0.0001 | 46.0 | 276 | 4.0186 | 0.5333 |
0.0001 | 47.0 | 282 | 4.0186 | 0.5333 |
0.0001 | 48.0 | 288 | 4.0186 | 0.5333 |
0.0001 | 49.0 | 294 | 4.0186 | 0.5333 |
0.0001 | 50.0 | 300 | 4.0186 | 0.5333 |
Framework versions
- Transformers 4.35.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.14.1