hkivancoral's picture
End of training
d7c822f
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_base_adamax_001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5952380952380952

hushem_1x_deit_base_adamax_001_fold4

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6471
  • Accuracy: 0.5952

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4889 0.2381
1.6928 2.0 12 1.4102 0.2381
1.6928 3.0 18 1.2949 0.4048
1.4466 4.0 24 1.1224 0.4762
1.3026 5.0 30 1.3079 0.3333
1.3026 6.0 36 1.0368 0.6190
1.2798 7.0 42 1.2143 0.3571
1.2798 8.0 48 1.0732 0.5
1.1914 9.0 54 1.0366 0.5476
1.2164 10.0 60 1.0675 0.5
1.2164 11.0 66 1.0841 0.4762
1.2177 12.0 72 1.1092 0.5952
1.2177 13.0 78 0.9871 0.5238
1.183 14.0 84 1.1380 0.4762
1.2146 15.0 90 1.1128 0.5
1.2146 16.0 96 0.9957 0.5952
1.1103 17.0 102 1.0192 0.5952
1.1103 18.0 108 1.1751 0.5
1.0656 19.0 114 1.1301 0.5
1.047 20.0 120 1.1327 0.4048
1.047 21.0 126 1.2359 0.4762
0.8853 22.0 132 1.1524 0.5952
0.8853 23.0 138 1.9551 0.3095
0.7611 24.0 144 1.3513 0.5
0.7727 25.0 150 1.6490 0.5476
0.7727 26.0 156 1.0702 0.4048
0.8546 27.0 162 1.7107 0.3333
0.8546 28.0 168 1.3302 0.4286
0.695 29.0 174 1.1947 0.5714
0.4593 30.0 180 1.8330 0.4762
0.4593 31.0 186 1.6031 0.5952
0.2978 32.0 192 2.1238 0.6190
0.2978 33.0 198 2.3897 0.5476
0.2625 34.0 204 2.1147 0.6190
0.1062 35.0 210 2.6950 0.5
0.1062 36.0 216 2.5016 0.6190
0.0682 37.0 222 2.6327 0.5476
0.0682 38.0 228 2.5000 0.5714
0.0309 39.0 234 2.4431 0.6190
0.019 40.0 240 2.6997 0.5714
0.019 41.0 246 2.6710 0.5952
0.0078 42.0 252 2.6471 0.5952
0.0078 43.0 258 2.6471 0.5952
0.0071 44.0 264 2.6471 0.5952
0.0054 45.0 270 2.6471 0.5952
0.0054 46.0 276 2.6471 0.5952
0.0076 47.0 282 2.6471 0.5952
0.0076 48.0 288 2.6471 0.5952
0.0053 49.0 294 2.6471 0.5952
0.0059 50.0 300 2.6471 0.5952

Framework versions

  • Transformers 4.35.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.7
  • Tokenizers 0.14.1