metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_base_rms_00001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6666666666666666
hushem_1x_deit_base_rms_00001_fold1
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.1852
- Accuracy: 0.6667
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.3238 | 0.3556 |
1.1473 | 2.0 | 12 | 1.1817 | 0.5111 |
1.1473 | 3.0 | 18 | 1.2929 | 0.4222 |
0.433 | 4.0 | 24 | 1.0792 | 0.6 |
0.0993 | 5.0 | 30 | 0.8040 | 0.7111 |
0.0993 | 6.0 | 36 | 1.0632 | 0.6 |
0.0211 | 7.0 | 42 | 1.0076 | 0.6222 |
0.0211 | 8.0 | 48 | 1.0203 | 0.6444 |
0.0072 | 9.0 | 54 | 1.0447 | 0.6444 |
0.0049 | 10.0 | 60 | 1.0417 | 0.6667 |
0.0049 | 11.0 | 66 | 1.0618 | 0.6222 |
0.0035 | 12.0 | 72 | 1.0538 | 0.6667 |
0.0035 | 13.0 | 78 | 1.0657 | 0.6667 |
0.0028 | 14.0 | 84 | 1.0857 | 0.6667 |
0.0023 | 15.0 | 90 | 1.0998 | 0.6667 |
0.0023 | 16.0 | 96 | 1.1075 | 0.6667 |
0.002 | 17.0 | 102 | 1.1046 | 0.6667 |
0.002 | 18.0 | 108 | 1.1222 | 0.6667 |
0.0017 | 19.0 | 114 | 1.1291 | 0.6667 |
0.0015 | 20.0 | 120 | 1.1399 | 0.6667 |
0.0015 | 21.0 | 126 | 1.1378 | 0.6667 |
0.0014 | 22.0 | 132 | 1.1446 | 0.6667 |
0.0014 | 23.0 | 138 | 1.1459 | 0.6667 |
0.0012 | 24.0 | 144 | 1.1478 | 0.6667 |
0.0011 | 25.0 | 150 | 1.1522 | 0.6667 |
0.0011 | 26.0 | 156 | 1.1509 | 0.6667 |
0.0011 | 27.0 | 162 | 1.1558 | 0.6667 |
0.0011 | 28.0 | 168 | 1.1564 | 0.6667 |
0.001 | 29.0 | 174 | 1.1604 | 0.6667 |
0.001 | 30.0 | 180 | 1.1663 | 0.6667 |
0.001 | 31.0 | 186 | 1.1692 | 0.6667 |
0.0009 | 32.0 | 192 | 1.1711 | 0.6667 |
0.0009 | 33.0 | 198 | 1.1736 | 0.6667 |
0.0009 | 34.0 | 204 | 1.1741 | 0.6667 |
0.0008 | 35.0 | 210 | 1.1751 | 0.6667 |
0.0008 | 36.0 | 216 | 1.1789 | 0.6667 |
0.0008 | 37.0 | 222 | 1.1812 | 0.6667 |
0.0008 | 38.0 | 228 | 1.1837 | 0.6667 |
0.0008 | 39.0 | 234 | 1.1842 | 0.6667 |
0.0008 | 40.0 | 240 | 1.1850 | 0.6667 |
0.0008 | 41.0 | 246 | 1.1853 | 0.6667 |
0.0008 | 42.0 | 252 | 1.1852 | 0.6667 |
0.0008 | 43.0 | 258 | 1.1852 | 0.6667 |
0.0008 | 44.0 | 264 | 1.1852 | 0.6667 |
0.0008 | 45.0 | 270 | 1.1852 | 0.6667 |
0.0008 | 46.0 | 276 | 1.1852 | 0.6667 |
0.0008 | 47.0 | 282 | 1.1852 | 0.6667 |
0.0008 | 48.0 | 288 | 1.1852 | 0.6667 |
0.0008 | 49.0 | 294 | 1.1852 | 0.6667 |
0.0008 | 50.0 | 300 | 1.1852 | 0.6667 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0