metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_deit_base_sgd_001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.35714285714285715
hushem_1x_deit_base_sgd_001_fold4
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.3500
- Accuracy: 0.3571
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 6 | 1.4099 | 0.1667 |
1.4464 | 2.0 | 12 | 1.4056 | 0.1667 |
1.4464 | 3.0 | 18 | 1.4012 | 0.1667 |
1.409 | 4.0 | 24 | 1.3971 | 0.1667 |
1.405 | 5.0 | 30 | 1.3937 | 0.1905 |
1.405 | 6.0 | 36 | 1.3906 | 0.1905 |
1.3913 | 7.0 | 42 | 1.3880 | 0.1905 |
1.3913 | 8.0 | 48 | 1.3852 | 0.1905 |
1.3821 | 9.0 | 54 | 1.3824 | 0.1667 |
1.3709 | 10.0 | 60 | 1.3801 | 0.1667 |
1.3709 | 11.0 | 66 | 1.3778 | 0.1905 |
1.3643 | 12.0 | 72 | 1.3757 | 0.2143 |
1.3643 | 13.0 | 78 | 1.3738 | 0.2619 |
1.3452 | 14.0 | 84 | 1.3719 | 0.2619 |
1.3451 | 15.0 | 90 | 1.3702 | 0.2619 |
1.3451 | 16.0 | 96 | 1.3686 | 0.2619 |
1.3306 | 17.0 | 102 | 1.3669 | 0.2619 |
1.3306 | 18.0 | 108 | 1.3655 | 0.2857 |
1.3266 | 19.0 | 114 | 1.3643 | 0.2857 |
1.3291 | 20.0 | 120 | 1.3632 | 0.2857 |
1.3291 | 21.0 | 126 | 1.3620 | 0.2857 |
1.3218 | 22.0 | 132 | 1.3610 | 0.2857 |
1.3218 | 23.0 | 138 | 1.3598 | 0.3095 |
1.3151 | 24.0 | 144 | 1.3588 | 0.3333 |
1.3182 | 25.0 | 150 | 1.3578 | 0.3333 |
1.3182 | 26.0 | 156 | 1.3568 | 0.3333 |
1.3072 | 27.0 | 162 | 1.3559 | 0.3333 |
1.3072 | 28.0 | 168 | 1.3552 | 0.3333 |
1.3081 | 29.0 | 174 | 1.3545 | 0.3571 |
1.3087 | 30.0 | 180 | 1.3539 | 0.3571 |
1.3087 | 31.0 | 186 | 1.3532 | 0.3571 |
1.2983 | 32.0 | 192 | 1.3527 | 0.3571 |
1.2983 | 33.0 | 198 | 1.3521 | 0.3333 |
1.2931 | 34.0 | 204 | 1.3516 | 0.3571 |
1.2999 | 35.0 | 210 | 1.3512 | 0.3571 |
1.2999 | 36.0 | 216 | 1.3509 | 0.3571 |
1.2926 | 37.0 | 222 | 1.3506 | 0.3571 |
1.2926 | 38.0 | 228 | 1.3504 | 0.3571 |
1.2948 | 39.0 | 234 | 1.3502 | 0.3571 |
1.2828 | 40.0 | 240 | 1.3501 | 0.3571 |
1.2828 | 41.0 | 246 | 1.3500 | 0.3571 |
1.2878 | 42.0 | 252 | 1.3500 | 0.3571 |
1.2878 | 43.0 | 258 | 1.3500 | 0.3571 |
1.2878 | 44.0 | 264 | 1.3500 | 0.3571 |
1.2935 | 45.0 | 270 | 1.3500 | 0.3571 |
1.2935 | 46.0 | 276 | 1.3500 | 0.3571 |
1.289 | 47.0 | 282 | 1.3500 | 0.3571 |
1.289 | 48.0 | 288 | 1.3500 | 0.3571 |
1.2878 | 49.0 | 294 | 1.3500 | 0.3571 |
1.2975 | 50.0 | 300 | 1.3500 | 0.3571 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.15.0