hkivancoral's picture
End of training
fd44796
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_sgd_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2682926829268293

hushem_1x_deit_small_sgd_0001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4475
  • Accuracy: 0.2683

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.5161 0.2439
1.5359 2.0 12 1.5118 0.2439
1.5359 3.0 18 1.5076 0.2439
1.5171 4.0 24 1.5040 0.2439
1.5208 5.0 30 1.5002 0.2683
1.5208 6.0 36 1.4969 0.2683
1.5066 7.0 42 1.4937 0.2683
1.5066 8.0 48 1.4908 0.2683
1.4941 9.0 54 1.4878 0.2683
1.4953 10.0 60 1.4851 0.2683
1.4953 11.0 66 1.4825 0.2683
1.498 12.0 72 1.4798 0.2683
1.498 13.0 78 1.4774 0.2683
1.465 14.0 84 1.4753 0.2683
1.4811 15.0 90 1.4730 0.2683
1.4811 16.0 96 1.4709 0.2683
1.476 17.0 102 1.4689 0.2683
1.476 18.0 108 1.4672 0.2683
1.4977 19.0 114 1.4656 0.2683
1.4745 20.0 120 1.4639 0.2683
1.4745 21.0 126 1.4624 0.2683
1.4662 22.0 132 1.4609 0.2683
1.4662 23.0 138 1.4594 0.2683
1.4905 24.0 144 1.4581 0.2683
1.465 25.0 150 1.4568 0.2683
1.465 26.0 156 1.4556 0.2683
1.4499 27.0 162 1.4545 0.2683
1.4499 28.0 168 1.4535 0.2683
1.473 29.0 174 1.4527 0.2683
1.4704 30.0 180 1.4520 0.2683
1.4704 31.0 186 1.4512 0.2683
1.4654 32.0 192 1.4506 0.2683
1.4654 33.0 198 1.4500 0.2683
1.4322 34.0 204 1.4494 0.2683
1.459 35.0 210 1.4490 0.2683
1.459 36.0 216 1.4486 0.2683
1.4499 37.0 222 1.4482 0.2683
1.4499 38.0 228 1.4480 0.2683
1.4314 39.0 234 1.4477 0.2683
1.4745 40.0 240 1.4476 0.2683
1.4745 41.0 246 1.4476 0.2683
1.4482 42.0 252 1.4475 0.2683
1.4482 43.0 258 1.4475 0.2683
1.4526 44.0 264 1.4475 0.2683
1.4693 45.0 270 1.4475 0.2683
1.4693 46.0 276 1.4475 0.2683
1.4506 47.0 282 1.4475 0.2683
1.4506 48.0 288 1.4475 0.2683
1.4529 49.0 294 1.4475 0.2683
1.4667 50.0 300 1.4475 0.2683

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1