hkivancoral's picture
End of training
31d511a
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_beit_large_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6888888888888889

hushem_40x_beit_large_adamax_001_fold2

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 4.4537
  • Accuracy: 0.6889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3184 1.0 215 1.1233 0.7333
0.1436 2.0 430 1.6198 0.6889
0.047 3.0 645 1.8592 0.6667
0.0527 4.0 860 1.5842 0.7111
0.0463 5.0 1075 2.7619 0.6889
0.0137 6.0 1290 1.4680 0.7556
0.0665 7.0 1505 2.2491 0.6889
0.0121 8.0 1720 1.7706 0.7556
0.0005 9.0 1935 2.1035 0.7556
0.0192 10.0 2150 3.0002 0.6889
0.02 11.0 2365 2.1406 0.6667
0.011 12.0 2580 2.2828 0.6667
0.0346 13.0 2795 2.5178 0.6667
0.0045 14.0 3010 2.0578 0.7333
0.0021 15.0 3225 1.4918 0.7556
0.0002 16.0 3440 2.6023 0.7111
0.0007 17.0 3655 2.4242 0.7111
0.0019 18.0 3870 2.8391 0.6667
0.0005 19.0 4085 2.9921 0.7556
0.0 20.0 4300 3.1529 0.6667
0.0 21.0 4515 2.7412 0.7556
0.0 22.0 4730 2.8583 0.7333
0.0 23.0 4945 2.9971 0.7333
0.0 24.0 5160 3.0142 0.7556
0.0 25.0 5375 3.0328 0.7556
0.0 26.0 5590 3.0307 0.7778
0.0 27.0 5805 3.2285 0.7556
0.0 28.0 6020 3.2719 0.7111
0.0 29.0 6235 2.7270 0.7778
0.0 30.0 6450 3.4979 0.7111
0.0 31.0 6665 3.4752 0.7333
0.0 32.0 6880 3.4952 0.7333
0.0 33.0 7095 3.5111 0.7333
0.0 34.0 7310 3.5230 0.7333
0.0 35.0 7525 3.5422 0.7333
0.0 36.0 7740 3.5606 0.7333
0.0 37.0 7955 3.5754 0.7333
0.0 38.0 8170 3.5859 0.7333
0.0 39.0 8385 3.5773 0.7333
0.0 40.0 8600 4.7039 0.6
0.0 41.0 8815 4.7831 0.6
0.0 42.0 9030 4.4812 0.6667
0.0 43.0 9245 4.4224 0.6889
0.0 44.0 9460 4.4294 0.6889
0.0 45.0 9675 4.4285 0.6889
0.0 46.0 9890 4.4304 0.6889
0.0 47.0 10105 4.4476 0.6889
0.0 48.0 10320 4.4513 0.6889
0.0 49.0 10535 4.4531 0.6889
0.0 50.0 10750 4.4537 0.6889

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2