hkivancoral's picture
End of training
f183cac
|
raw
history blame
4.88 kB
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_40x_beit_large_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8048780487804879

hushem_40x_beit_large_adamax_001_fold5

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1906
  • Accuracy: 0.8049

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3728 1.0 220 0.2484 0.9024
0.2424 2.0 440 1.0593 0.7805
0.1221 3.0 660 0.9944 0.7317
0.0746 4.0 880 1.4179 0.7073
0.0501 5.0 1100 0.6557 0.8049
0.0914 6.0 1320 1.5051 0.7073
0.0408 7.0 1540 0.1238 0.9512
0.0281 8.0 1760 0.6572 0.8537
0.0024 9.0 1980 0.9478 0.8049
0.0097 10.0 2200 0.6899 0.8537
0.0507 11.0 2420 1.0591 0.8049
0.0001 12.0 2640 0.9070 0.8780
0.0056 13.0 2860 1.1233 0.7805
0.0168 14.0 3080 1.3279 0.8049
0.0205 15.0 3300 1.4696 0.8049
0.0004 16.0 3520 1.8691 0.7561
0.0001 17.0 3740 1.4193 0.8293
0.0029 18.0 3960 1.9471 0.8049
0.0 19.0 4180 1.9190 0.7317
0.0 20.0 4400 2.0689 0.7317
0.0021 21.0 4620 0.3369 0.9024
0.0001 22.0 4840 0.9862 0.8537
0.0001 23.0 5060 0.9863 0.8780
0.0118 24.0 5280 1.0405 0.8049
0.0016 25.0 5500 1.4400 0.7805
0.0379 26.0 5720 1.0773 0.8537
0.0 27.0 5940 0.9902 0.8537
0.0 28.0 6160 0.9125 0.8293
0.0 29.0 6380 0.8492 0.8293
0.0 30.0 6600 1.3170 0.8293
0.0 31.0 6820 1.3145 0.7805
0.0 32.0 7040 0.7274 0.8780
0.0 33.0 7260 0.7992 0.8780
0.0 34.0 7480 0.7001 0.9024
0.0 35.0 7700 0.7059 0.9024
0.0 36.0 7920 0.7509 0.9024
0.0 37.0 8140 0.7646 0.9024
0.0 38.0 8360 1.2149 0.8293
0.0 39.0 8580 1.2146 0.8293
0.0 40.0 8800 1.2180 0.8293
0.0 41.0 9020 1.1864 0.8049
0.0 42.0 9240 1.1736 0.8049
0.0 43.0 9460 1.1601 0.8049
0.0 44.0 9680 1.1683 0.8049
0.0 45.0 9900 1.1682 0.8049
0.0 46.0 10120 1.1690 0.8049
0.0 47.0 10340 1.1691 0.8049
0.0 48.0 10560 1.1738 0.8049
0.0 49.0 10780 1.1753 0.8049
0.0 50.0 11000 1.1906 0.8049

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2