hkivancoral's picture
End of training
8edfc2c
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_base_adamax_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4888888888888889

hushem_5x_deit_base_adamax_001_fold2

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 5.7416
  • Accuracy: 0.4889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4053 1.0 27 1.3685 0.3111
1.3925 2.0 54 3.6868 0.2889
1.2318 3.0 81 1.5265 0.3333
1.1218 4.0 108 1.3720 0.3778
0.9389 5.0 135 1.3538 0.4444
0.8792 6.0 162 1.1885 0.4444
0.8387 7.0 189 1.3407 0.4889
0.7915 8.0 216 1.2361 0.4222
0.79 9.0 243 1.2485 0.4667
0.7076 10.0 270 1.6183 0.5333
0.6051 11.0 297 1.7700 0.4889
0.5603 12.0 324 1.7918 0.3556
0.6144 13.0 351 2.1767 0.5556
0.5279 14.0 378 1.6851 0.3778
0.3562 15.0 405 2.1689 0.4444
0.3897 16.0 432 2.2755 0.4667
0.4523 17.0 459 2.3235 0.4222
0.5055 18.0 486 2.6282 0.5556
0.2707 19.0 513 2.3398 0.5333
0.4827 20.0 540 2.5025 0.5111
0.2449 21.0 567 2.2455 0.4667
0.3199 22.0 594 3.8583 0.5333
0.2715 23.0 621 2.9016 0.5556
0.2241 24.0 648 2.9266 0.4444
0.1264 25.0 675 3.0321 0.4222
0.1028 26.0 702 3.8439 0.5778
0.2082 27.0 729 3.7749 0.5333
0.2344 28.0 756 3.4616 0.5333
0.0842 29.0 783 3.5970 0.5111
0.0483 30.0 810 4.3955 0.5111
0.1454 31.0 837 3.9120 0.5556
0.0972 32.0 864 3.9463 0.4889
0.014 33.0 891 4.4955 0.4889
0.0007 34.0 918 5.1958 0.5111
0.0273 35.0 945 5.0022 0.4889
0.0071 36.0 972 4.9340 0.5333
0.0003 37.0 999 5.2310 0.4889
0.0004 38.0 1026 5.5820 0.4889
0.0001 39.0 1053 5.6491 0.4889
0.0001 40.0 1080 5.6867 0.4889
0.0001 41.0 1107 5.7009 0.4889
0.0001 42.0 1134 5.7115 0.4889
0.0 43.0 1161 5.7213 0.4889
0.0001 44.0 1188 5.7289 0.4889
0.0001 45.0 1215 5.7342 0.4889
0.0 46.0 1242 5.7384 0.4889
0.0 47.0 1269 5.7406 0.4889
0.0 48.0 1296 5.7416 0.4889
0.0001 49.0 1323 5.7416 0.4889
0.0 50.0 1350 5.7416 0.4889

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0