metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_base_rms_0001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9047619047619048
hushem_5x_deit_base_rms_0001_fold4
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5888
- Accuracy: 0.9048
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.6398 | 1.0 | 28 | 1.4620 | 0.2381 |
1.4471 | 2.0 | 56 | 1.4867 | 0.2619 |
1.4043 | 3.0 | 84 | 1.4639 | 0.2381 |
1.6225 | 4.0 | 112 | 1.1986 | 0.4524 |
1.0459 | 5.0 | 140 | 1.1310 | 0.4762 |
0.7275 | 6.0 | 168 | 0.7753 | 0.6429 |
0.4185 | 7.0 | 196 | 0.5503 | 0.7857 |
0.2249 | 8.0 | 224 | 0.5491 | 0.8571 |
0.0749 | 9.0 | 252 | 0.2650 | 0.9286 |
0.0643 | 10.0 | 280 | 0.5070 | 0.8333 |
0.083 | 11.0 | 308 | 0.5183 | 0.8810 |
0.0258 | 12.0 | 336 | 0.5166 | 0.8571 |
0.0004 | 13.0 | 364 | 0.4395 | 0.9524 |
0.03 | 14.0 | 392 | 0.5344 | 0.9048 |
0.0374 | 15.0 | 420 | 1.0859 | 0.8095 |
0.032 | 16.0 | 448 | 0.4372 | 0.9048 |
0.0018 | 17.0 | 476 | 0.4691 | 0.9048 |
0.0319 | 18.0 | 504 | 0.5620 | 0.8810 |
0.022 | 19.0 | 532 | 0.4782 | 0.9048 |
0.0002 | 20.0 | 560 | 0.4687 | 0.9048 |
0.0001 | 21.0 | 588 | 0.4749 | 0.9048 |
0.0001 | 22.0 | 616 | 0.4799 | 0.9048 |
0.0001 | 23.0 | 644 | 0.4865 | 0.9048 |
0.0001 | 24.0 | 672 | 0.4924 | 0.9048 |
0.0001 | 25.0 | 700 | 0.4977 | 0.9048 |
0.0001 | 26.0 | 728 | 0.5030 | 0.9048 |
0.0 | 27.0 | 756 | 0.5085 | 0.9048 |
0.0 | 28.0 | 784 | 0.5132 | 0.9048 |
0.0 | 29.0 | 812 | 0.5184 | 0.9048 |
0.0 | 30.0 | 840 | 0.5233 | 0.9048 |
0.0 | 31.0 | 868 | 0.5283 | 0.9048 |
0.0 | 32.0 | 896 | 0.5333 | 0.9048 |
0.0 | 33.0 | 924 | 0.5383 | 0.9048 |
0.0 | 34.0 | 952 | 0.5430 | 0.9048 |
0.0 | 35.0 | 980 | 0.5476 | 0.9048 |
0.0 | 36.0 | 1008 | 0.5522 | 0.9048 |
0.0 | 37.0 | 1036 | 0.5569 | 0.9048 |
0.0 | 38.0 | 1064 | 0.5613 | 0.9048 |
0.0 | 39.0 | 1092 | 0.5655 | 0.9048 |
0.0 | 40.0 | 1120 | 0.5694 | 0.9048 |
0.0 | 41.0 | 1148 | 0.5725 | 0.9048 |
0.0 | 42.0 | 1176 | 0.5761 | 0.9048 |
0.0 | 43.0 | 1204 | 0.5794 | 0.9048 |
0.0 | 44.0 | 1232 | 0.5824 | 0.9048 |
0.0 | 45.0 | 1260 | 0.5848 | 0.9048 |
0.0 | 46.0 | 1288 | 0.5868 | 0.9048 |
0.0 | 47.0 | 1316 | 0.5882 | 0.9048 |
0.0 | 48.0 | 1344 | 0.5888 | 0.9048 |
0.0 | 49.0 | 1372 | 0.5888 | 0.9048 |
0.0 | 50.0 | 1400 | 0.5888 | 0.9048 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0