hkivancoral's picture
End of training
3ad116b
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_base_rms_0001_fold4
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9047619047619048

hushem_5x_deit_base_rms_0001_fold4

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5888
  • Accuracy: 0.9048

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6398 1.0 28 1.4620 0.2381
1.4471 2.0 56 1.4867 0.2619
1.4043 3.0 84 1.4639 0.2381
1.6225 4.0 112 1.1986 0.4524
1.0459 5.0 140 1.1310 0.4762
0.7275 6.0 168 0.7753 0.6429
0.4185 7.0 196 0.5503 0.7857
0.2249 8.0 224 0.5491 0.8571
0.0749 9.0 252 0.2650 0.9286
0.0643 10.0 280 0.5070 0.8333
0.083 11.0 308 0.5183 0.8810
0.0258 12.0 336 0.5166 0.8571
0.0004 13.0 364 0.4395 0.9524
0.03 14.0 392 0.5344 0.9048
0.0374 15.0 420 1.0859 0.8095
0.032 16.0 448 0.4372 0.9048
0.0018 17.0 476 0.4691 0.9048
0.0319 18.0 504 0.5620 0.8810
0.022 19.0 532 0.4782 0.9048
0.0002 20.0 560 0.4687 0.9048
0.0001 21.0 588 0.4749 0.9048
0.0001 22.0 616 0.4799 0.9048
0.0001 23.0 644 0.4865 0.9048
0.0001 24.0 672 0.4924 0.9048
0.0001 25.0 700 0.4977 0.9048
0.0001 26.0 728 0.5030 0.9048
0.0 27.0 756 0.5085 0.9048
0.0 28.0 784 0.5132 0.9048
0.0 29.0 812 0.5184 0.9048
0.0 30.0 840 0.5233 0.9048
0.0 31.0 868 0.5283 0.9048
0.0 32.0 896 0.5333 0.9048
0.0 33.0 924 0.5383 0.9048
0.0 34.0 952 0.5430 0.9048
0.0 35.0 980 0.5476 0.9048
0.0 36.0 1008 0.5522 0.9048
0.0 37.0 1036 0.5569 0.9048
0.0 38.0 1064 0.5613 0.9048
0.0 39.0 1092 0.5655 0.9048
0.0 40.0 1120 0.5694 0.9048
0.0 41.0 1148 0.5725 0.9048
0.0 42.0 1176 0.5761 0.9048
0.0 43.0 1204 0.5794 0.9048
0.0 44.0 1232 0.5824 0.9048
0.0 45.0 1260 0.5848 0.9048
0.0 46.0 1288 0.5868 0.9048
0.0 47.0 1316 0.5882 0.9048
0.0 48.0 1344 0.5888 0.9048
0.0 49.0 1372 0.5888 0.9048
0.0 50.0 1400 0.5888 0.9048

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0