hkivancoral's picture
End of training
de8ae8c
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_base_rms_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8536585365853658

hushem_5x_deit_base_rms_0001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3118
  • Accuracy: 0.8537

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5446 1.0 28 1.3850 0.2195
1.371 2.0 56 1.0037 0.4878
0.7358 3.0 84 0.5519 0.7561
0.2869 4.0 112 0.6592 0.7561
0.1411 5.0 140 0.6324 0.8780
0.0266 6.0 168 0.8126 0.8049
0.0011 7.0 196 0.7003 0.8537
0.0012 8.0 224 1.2708 0.8049
0.0223 9.0 252 0.7784 0.8780
0.0109 10.0 280 1.2289 0.7805
0.0002 11.0 308 0.9688 0.8537
0.03 12.0 336 0.8929 0.8537
0.0037 13.0 364 0.7649 0.8537
0.0119 14.0 392 0.9677 0.8049
0.0001 15.0 420 1.0107 0.7805
0.0001 16.0 448 1.0261 0.7805
0.0001 17.0 476 1.0390 0.7805
0.0001 18.0 504 1.0514 0.7805
0.0001 19.0 532 1.0626 0.7805
0.0 20.0 560 1.0741 0.7805
0.0 21.0 588 1.0847 0.7805
0.0 22.0 616 1.0958 0.7805
0.0 23.0 644 1.1069 0.7805
0.0 24.0 672 1.1169 0.7805
0.0 25.0 700 1.1262 0.8049
0.0 26.0 728 1.1359 0.8049
0.0 27.0 756 1.1455 0.8049
0.0 28.0 784 1.1554 0.8049
0.0 29.0 812 1.1647 0.8049
0.0 30.0 840 1.1746 0.8049
0.0 31.0 868 1.1846 0.8049
0.0 32.0 896 1.1951 0.8049
0.0 33.0 924 1.2053 0.8293
0.0 34.0 952 1.2145 0.8293
0.0 35.0 980 1.2243 0.8537
0.0 36.0 1008 1.2340 0.8537
0.0 37.0 1036 1.2436 0.8537
0.0 38.0 1064 1.2528 0.8537
0.0 39.0 1092 1.2615 0.8537
0.0 40.0 1120 1.2699 0.8537
0.0 41.0 1148 1.2781 0.8537
0.0 42.0 1176 1.2859 0.8537
0.0 43.0 1204 1.2920 0.8537
0.0 44.0 1232 1.2978 0.8537
0.0 45.0 1260 1.3031 0.8537
0.0 46.0 1288 1.3073 0.8537
0.0 47.0 1316 1.3103 0.8537
0.0 48.0 1344 1.3117 0.8537
0.0 49.0 1372 1.3118 0.8537
0.0 50.0 1400 1.3118 0.8537

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0