metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_base_sgd_00001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.37209302325581395
hushem_5x_deit_base_sgd_00001_fold3
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.3841
- Accuracy: 0.3721
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4207 | 1.0 | 28 | 1.3865 | 0.3721 |
1.4337 | 2.0 | 56 | 1.3864 | 0.3721 |
1.445 | 3.0 | 84 | 1.3863 | 0.3721 |
1.4489 | 4.0 | 112 | 1.3862 | 0.3721 |
1.3943 | 5.0 | 140 | 1.3861 | 0.3721 |
1.4493 | 6.0 | 168 | 1.3860 | 0.3721 |
1.4229 | 7.0 | 196 | 1.3859 | 0.3721 |
1.4563 | 8.0 | 224 | 1.3858 | 0.3721 |
1.4234 | 9.0 | 252 | 1.3857 | 0.3721 |
1.4265 | 10.0 | 280 | 1.3856 | 0.3721 |
1.4288 | 11.0 | 308 | 1.3855 | 0.3721 |
1.437 | 12.0 | 336 | 1.3855 | 0.3721 |
1.4189 | 13.0 | 364 | 1.3854 | 0.3721 |
1.4336 | 14.0 | 392 | 1.3853 | 0.3721 |
1.3938 | 15.0 | 420 | 1.3852 | 0.3721 |
1.4323 | 16.0 | 448 | 1.3851 | 0.3721 |
1.4267 | 17.0 | 476 | 1.3851 | 0.3721 |
1.4208 | 18.0 | 504 | 1.3850 | 0.3721 |
1.4257 | 19.0 | 532 | 1.3849 | 0.3721 |
1.4426 | 20.0 | 560 | 1.3849 | 0.3721 |
1.4493 | 21.0 | 588 | 1.3848 | 0.3721 |
1.4203 | 22.0 | 616 | 1.3848 | 0.3721 |
1.4209 | 23.0 | 644 | 1.3847 | 0.3721 |
1.4152 | 24.0 | 672 | 1.3847 | 0.3721 |
1.4253 | 25.0 | 700 | 1.3846 | 0.3721 |
1.4344 | 26.0 | 728 | 1.3846 | 0.3721 |
1.4406 | 27.0 | 756 | 1.3845 | 0.3721 |
1.435 | 28.0 | 784 | 1.3845 | 0.3721 |
1.4128 | 29.0 | 812 | 1.3844 | 0.3721 |
1.4483 | 30.0 | 840 | 1.3844 | 0.3721 |
1.4308 | 31.0 | 868 | 1.3844 | 0.3721 |
1.4319 | 32.0 | 896 | 1.3843 | 0.3721 |
1.4115 | 33.0 | 924 | 1.3843 | 0.3721 |
1.4269 | 34.0 | 952 | 1.3843 | 0.3721 |
1.4112 | 35.0 | 980 | 1.3842 | 0.3721 |
1.4513 | 36.0 | 1008 | 1.3842 | 0.3721 |
1.4288 | 37.0 | 1036 | 1.3842 | 0.3721 |
1.4247 | 38.0 | 1064 | 1.3842 | 0.3721 |
1.3988 | 39.0 | 1092 | 1.3842 | 0.3721 |
1.4499 | 40.0 | 1120 | 1.3841 | 0.3721 |
1.44 | 41.0 | 1148 | 1.3841 | 0.3721 |
1.4219 | 42.0 | 1176 | 1.3841 | 0.3721 |
1.437 | 43.0 | 1204 | 1.3841 | 0.3721 |
1.411 | 44.0 | 1232 | 1.3841 | 0.3721 |
1.4061 | 45.0 | 1260 | 1.3841 | 0.3721 |
1.4217 | 46.0 | 1288 | 1.3841 | 0.3721 |
1.4337 | 47.0 | 1316 | 1.3841 | 0.3721 |
1.4341 | 48.0 | 1344 | 1.3841 | 0.3721 |
1.415 | 49.0 | 1372 | 1.3841 | 0.3721 |
1.4182 | 50.0 | 1400 | 1.3841 | 0.3721 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0