hkivancoral's picture
End of training
6d8e0b0
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_base_sgd_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.37209302325581395

hushem_5x_deit_base_sgd_00001_fold3

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3841
  • Accuracy: 0.3721

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4207 1.0 28 1.3865 0.3721
1.4337 2.0 56 1.3864 0.3721
1.445 3.0 84 1.3863 0.3721
1.4489 4.0 112 1.3862 0.3721
1.3943 5.0 140 1.3861 0.3721
1.4493 6.0 168 1.3860 0.3721
1.4229 7.0 196 1.3859 0.3721
1.4563 8.0 224 1.3858 0.3721
1.4234 9.0 252 1.3857 0.3721
1.4265 10.0 280 1.3856 0.3721
1.4288 11.0 308 1.3855 0.3721
1.437 12.0 336 1.3855 0.3721
1.4189 13.0 364 1.3854 0.3721
1.4336 14.0 392 1.3853 0.3721
1.3938 15.0 420 1.3852 0.3721
1.4323 16.0 448 1.3851 0.3721
1.4267 17.0 476 1.3851 0.3721
1.4208 18.0 504 1.3850 0.3721
1.4257 19.0 532 1.3849 0.3721
1.4426 20.0 560 1.3849 0.3721
1.4493 21.0 588 1.3848 0.3721
1.4203 22.0 616 1.3848 0.3721
1.4209 23.0 644 1.3847 0.3721
1.4152 24.0 672 1.3847 0.3721
1.4253 25.0 700 1.3846 0.3721
1.4344 26.0 728 1.3846 0.3721
1.4406 27.0 756 1.3845 0.3721
1.435 28.0 784 1.3845 0.3721
1.4128 29.0 812 1.3844 0.3721
1.4483 30.0 840 1.3844 0.3721
1.4308 31.0 868 1.3844 0.3721
1.4319 32.0 896 1.3843 0.3721
1.4115 33.0 924 1.3843 0.3721
1.4269 34.0 952 1.3843 0.3721
1.4112 35.0 980 1.3842 0.3721
1.4513 36.0 1008 1.3842 0.3721
1.4288 37.0 1036 1.3842 0.3721
1.4247 38.0 1064 1.3842 0.3721
1.3988 39.0 1092 1.3842 0.3721
1.4499 40.0 1120 1.3841 0.3721
1.44 41.0 1148 1.3841 0.3721
1.4219 42.0 1176 1.3841 0.3721
1.437 43.0 1204 1.3841 0.3721
1.411 44.0 1232 1.3841 0.3721
1.4061 45.0 1260 1.3841 0.3721
1.4217 46.0 1288 1.3841 0.3721
1.4337 47.0 1316 1.3841 0.3721
1.4341 48.0 1344 1.3841 0.3721
1.415 49.0 1372 1.3841 0.3721
1.4182 50.0 1400 1.3841 0.3721

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0