hkivancoral's picture
End of training
e4687b9
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_base_sgd_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.17073170731707318

hushem_5x_deit_base_sgd_00001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3712
  • Accuracy: 0.1707

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4308 1.0 28 1.3745 0.2195
1.4381 2.0 56 1.3744 0.1951
1.4303 3.0 84 1.3742 0.1951
1.4196 4.0 112 1.3741 0.1951
1.4462 5.0 140 1.3739 0.1951
1.4289 6.0 168 1.3738 0.1951
1.4513 7.0 196 1.3737 0.1951
1.454 8.0 224 1.3736 0.1951
1.4395 9.0 252 1.3734 0.1951
1.4245 10.0 280 1.3733 0.1951
1.4477 11.0 308 1.3732 0.1951
1.4479 12.0 336 1.3731 0.1951
1.4264 13.0 364 1.3730 0.1951
1.4179 14.0 392 1.3729 0.1951
1.4497 15.0 420 1.3728 0.1951
1.4379 16.0 448 1.3727 0.1951
1.4414 17.0 476 1.3726 0.1951
1.452 18.0 504 1.3725 0.1951
1.4605 19.0 532 1.3724 0.1951
1.4508 20.0 560 1.3723 0.1951
1.4355 21.0 588 1.3722 0.1951
1.4232 22.0 616 1.3721 0.1951
1.4314 23.0 644 1.3721 0.1951
1.4464 24.0 672 1.3720 0.1951
1.4347 25.0 700 1.3719 0.1951
1.4331 26.0 728 1.3719 0.1707
1.4315 27.0 756 1.3718 0.1707
1.4463 28.0 784 1.3717 0.1707
1.4461 29.0 812 1.3717 0.1707
1.4576 30.0 840 1.3716 0.1707
1.4346 31.0 868 1.3716 0.1707
1.4439 32.0 896 1.3715 0.1707
1.4382 33.0 924 1.3715 0.1707
1.4458 34.0 952 1.3715 0.1707
1.4323 35.0 980 1.3714 0.1707
1.4333 36.0 1008 1.3714 0.1707
1.4238 37.0 1036 1.3714 0.1707
1.4188 38.0 1064 1.3713 0.1707
1.4355 39.0 1092 1.3713 0.1707
1.4499 40.0 1120 1.3713 0.1707
1.4289 41.0 1148 1.3713 0.1707
1.4376 42.0 1176 1.3712 0.1707
1.4427 43.0 1204 1.3712 0.1707
1.4421 44.0 1232 1.3712 0.1707
1.4536 45.0 1260 1.3712 0.1707
1.4126 46.0 1288 1.3712 0.1707
1.4355 47.0 1316 1.3712 0.1707
1.4384 48.0 1344 1.3712 0.1707
1.431 49.0 1372 1.3712 0.1707
1.4525 50.0 1400 1.3712 0.1707

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0