hkivancoral's picture
End of training
03f35b9
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_adamax_00001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8604651162790697

hushem_5x_deit_tiny_adamax_00001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5891
  • Accuracy: 0.8605

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3491 1.0 28 1.3171 0.4186
1.0583 2.0 56 1.1404 0.4186
0.8133 3.0 84 1.0626 0.5581
0.7236 4.0 112 0.9689 0.6047
0.5407 5.0 140 0.9154 0.6512
0.4787 6.0 168 0.8329 0.6977
0.4043 7.0 196 0.7849 0.7442
0.3066 8.0 224 0.7047 0.7209
0.2483 9.0 252 0.6601 0.7209
0.1984 10.0 280 0.6346 0.7209
0.1508 11.0 308 0.6148 0.7209
0.1138 12.0 336 0.6034 0.7442
0.0962 13.0 364 0.5398 0.7674
0.0639 14.0 392 0.4866 0.7907
0.0434 15.0 420 0.4751 0.8140
0.0344 16.0 448 0.5249 0.7674
0.0259 17.0 476 0.4934 0.8140
0.0173 18.0 504 0.5157 0.8140
0.0125 19.0 532 0.4794 0.8140
0.0079 20.0 560 0.5000 0.8140
0.0068 21.0 588 0.5083 0.8140
0.0051 22.0 616 0.5005 0.8372
0.0044 23.0 644 0.4949 0.8372
0.0034 24.0 672 0.5221 0.8372
0.003 25.0 700 0.5304 0.8605
0.0025 26.0 728 0.5459 0.8372
0.0023 27.0 756 0.5309 0.8372
0.0022 28.0 784 0.5468 0.8605
0.002 29.0 812 0.5471 0.8372
0.0018 30.0 840 0.5437 0.8372
0.0015 31.0 868 0.5534 0.8372
0.0016 32.0 896 0.5689 0.8605
0.0015 33.0 924 0.5621 0.8605
0.0014 34.0 952 0.5754 0.8605
0.0013 35.0 980 0.5699 0.8605
0.0012 36.0 1008 0.5713 0.8605
0.0013 37.0 1036 0.5830 0.8372
0.0011 38.0 1064 0.5769 0.8372
0.0012 39.0 1092 0.5866 0.8372
0.0011 40.0 1120 0.5802 0.8372
0.0011 41.0 1148 0.5838 0.8605
0.001 42.0 1176 0.5874 0.8605
0.001 43.0 1204 0.5844 0.8605
0.001 44.0 1232 0.5856 0.8605
0.0009 45.0 1260 0.5886 0.8605
0.001 46.0 1288 0.5883 0.8605
0.0009 47.0 1316 0.5899 0.8605
0.0009 48.0 1344 0.5891 0.8605
0.001 49.0 1372 0.5891 0.8605
0.001 50.0 1400 0.5891 0.8605

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0