metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_tiny_sgd_00001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.28888888888888886
hushem_5x_deit_tiny_sgd_00001_fold1
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.6463
- Accuracy: 0.2889
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.5609 | 1.0 | 27 | 1.6799 | 0.2667 |
1.5496 | 2.0 | 54 | 1.6782 | 0.2667 |
1.5787 | 3.0 | 81 | 1.6767 | 0.2667 |
1.5647 | 4.0 | 108 | 1.6752 | 0.2667 |
1.5195 | 5.0 | 135 | 1.6738 | 0.2667 |
1.5668 | 6.0 | 162 | 1.6723 | 0.2667 |
1.5392 | 7.0 | 189 | 1.6709 | 0.2667 |
1.5582 | 8.0 | 216 | 1.6695 | 0.2667 |
1.5313 | 9.0 | 243 | 1.6682 | 0.2667 |
1.5128 | 10.0 | 270 | 1.6669 | 0.2667 |
1.5483 | 11.0 | 297 | 1.6658 | 0.2667 |
1.4916 | 12.0 | 324 | 1.6646 | 0.2667 |
1.5319 | 13.0 | 351 | 1.6635 | 0.2667 |
1.5642 | 14.0 | 378 | 1.6625 | 0.2667 |
1.5157 | 15.0 | 405 | 1.6614 | 0.2667 |
1.5547 | 16.0 | 432 | 1.6604 | 0.2667 |
1.561 | 17.0 | 459 | 1.6595 | 0.2667 |
1.5198 | 18.0 | 486 | 1.6585 | 0.2667 |
1.5162 | 19.0 | 513 | 1.6577 | 0.2667 |
1.501 | 20.0 | 540 | 1.6568 | 0.2667 |
1.536 | 21.0 | 567 | 1.6560 | 0.2667 |
1.5261 | 22.0 | 594 | 1.6552 | 0.2667 |
1.5076 | 23.0 | 621 | 1.6545 | 0.2667 |
1.5241 | 24.0 | 648 | 1.6538 | 0.2667 |
1.519 | 25.0 | 675 | 1.6531 | 0.2667 |
1.5215 | 26.0 | 702 | 1.6525 | 0.2667 |
1.4834 | 27.0 | 729 | 1.6518 | 0.2667 |
1.52 | 28.0 | 756 | 1.6513 | 0.2667 |
1.5201 | 29.0 | 783 | 1.6507 | 0.2667 |
1.5274 | 30.0 | 810 | 1.6502 | 0.2667 |
1.5272 | 31.0 | 837 | 1.6498 | 0.2667 |
1.5239 | 32.0 | 864 | 1.6493 | 0.2667 |
1.4813 | 33.0 | 891 | 1.6489 | 0.2667 |
1.5127 | 34.0 | 918 | 1.6485 | 0.2889 |
1.5315 | 35.0 | 945 | 1.6482 | 0.2889 |
1.4986 | 36.0 | 972 | 1.6479 | 0.2889 |
1.5458 | 37.0 | 999 | 1.6476 | 0.2889 |
1.5577 | 38.0 | 1026 | 1.6473 | 0.2889 |
1.5374 | 39.0 | 1053 | 1.6471 | 0.2889 |
1.4671 | 40.0 | 1080 | 1.6469 | 0.2889 |
1.5237 | 41.0 | 1107 | 1.6467 | 0.2889 |
1.4934 | 42.0 | 1134 | 1.6466 | 0.2889 |
1.5479 | 43.0 | 1161 | 1.6465 | 0.2889 |
1.5299 | 44.0 | 1188 | 1.6464 | 0.2889 |
1.5139 | 45.0 | 1215 | 1.6463 | 0.2889 |
1.4949 | 46.0 | 1242 | 1.6463 | 0.2889 |
1.5114 | 47.0 | 1269 | 1.6463 | 0.2889 |
1.5095 | 48.0 | 1296 | 1.6463 | 0.2889 |
1.514 | 49.0 | 1323 | 1.6463 | 0.2889 |
1.4915 | 50.0 | 1350 | 1.6463 | 0.2889 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0