metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_tiny_sgd_00001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.27906976744186046
hushem_5x_deit_tiny_sgd_00001_fold3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.6587
- Accuracy: 0.2791
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.5526 | 1.0 | 28 | 1.7069 | 0.2791 |
1.5173 | 2.0 | 56 | 1.7047 | 0.2791 |
1.5161 | 3.0 | 84 | 1.7025 | 0.2791 |
1.5055 | 4.0 | 112 | 1.7004 | 0.2791 |
1.4587 | 5.0 | 140 | 1.6983 | 0.2791 |
1.5199 | 6.0 | 168 | 1.6963 | 0.2791 |
1.5621 | 7.0 | 196 | 1.6943 | 0.2791 |
1.5165 | 8.0 | 224 | 1.6925 | 0.2791 |
1.5226 | 9.0 | 252 | 1.6906 | 0.2791 |
1.4955 | 10.0 | 280 | 1.6889 | 0.2791 |
1.5136 | 11.0 | 308 | 1.6873 | 0.2791 |
1.5328 | 12.0 | 336 | 1.6856 | 0.2791 |
1.4996 | 13.0 | 364 | 1.6840 | 0.2791 |
1.5073 | 14.0 | 392 | 1.6824 | 0.2791 |
1.566 | 15.0 | 420 | 1.6809 | 0.2791 |
1.501 | 16.0 | 448 | 1.6795 | 0.2791 |
1.4781 | 17.0 | 476 | 1.6780 | 0.2791 |
1.5327 | 18.0 | 504 | 1.6766 | 0.2791 |
1.4922 | 19.0 | 532 | 1.6753 | 0.2791 |
1.5682 | 20.0 | 560 | 1.6741 | 0.2791 |
1.4804 | 21.0 | 588 | 1.6729 | 0.2791 |
1.4661 | 22.0 | 616 | 1.6719 | 0.2791 |
1.5385 | 23.0 | 644 | 1.6708 | 0.2791 |
1.4844 | 24.0 | 672 | 1.6698 | 0.2791 |
1.583 | 25.0 | 700 | 1.6688 | 0.2791 |
1.4741 | 26.0 | 728 | 1.6678 | 0.2791 |
1.4816 | 27.0 | 756 | 1.6669 | 0.2791 |
1.4922 | 28.0 | 784 | 1.6662 | 0.2791 |
1.5132 | 29.0 | 812 | 1.6654 | 0.2791 |
1.4828 | 30.0 | 840 | 1.6647 | 0.2791 |
1.4775 | 31.0 | 868 | 1.6640 | 0.2791 |
1.4969 | 32.0 | 896 | 1.6634 | 0.2791 |
1.5111 | 33.0 | 924 | 1.6627 | 0.2791 |
1.4897 | 34.0 | 952 | 1.6621 | 0.2791 |
1.485 | 35.0 | 980 | 1.6616 | 0.2791 |
1.5295 | 36.0 | 1008 | 1.6612 | 0.2791 |
1.4993 | 37.0 | 1036 | 1.6607 | 0.2791 |
1.4874 | 38.0 | 1064 | 1.6603 | 0.2791 |
1.5091 | 39.0 | 1092 | 1.6600 | 0.2791 |
1.4861 | 40.0 | 1120 | 1.6597 | 0.2791 |
1.5191 | 41.0 | 1148 | 1.6595 | 0.2791 |
1.4786 | 42.0 | 1176 | 1.6593 | 0.2791 |
1.4918 | 43.0 | 1204 | 1.6591 | 0.2791 |
1.5394 | 44.0 | 1232 | 1.6589 | 0.2791 |
1.4962 | 45.0 | 1260 | 1.6588 | 0.2791 |
1.4846 | 46.0 | 1288 | 1.6588 | 0.2791 |
1.4732 | 47.0 | 1316 | 1.6587 | 0.2791 |
1.4909 | 48.0 | 1344 | 1.6587 | 0.2791 |
1.4794 | 49.0 | 1372 | 1.6587 | 0.2791 |
1.4677 | 50.0 | 1400 | 1.6587 | 0.2791 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0