hkivancoral's picture
End of training
0541161
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_tiny_sgd_001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.3111111111111111

hushem_5x_deit_tiny_sgd_001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5326
  • Accuracy: 0.3111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5319 1.0 27 1.6147 0.1778
1.412 2.0 54 1.5641 0.2222
1.3305 3.0 81 1.5365 0.2
1.301 4.0 108 1.5559 0.2222
1.2455 5.0 135 1.5605 0.2444
1.184 6.0 162 1.5721 0.2444
1.1536 7.0 189 1.5847 0.2444
1.141 8.0 216 1.6070 0.2667
1.0813 9.0 243 1.6240 0.2667
1.0544 10.0 270 1.6212 0.2667
1.0306 11.0 297 1.6262 0.2667
0.9926 12.0 324 1.6270 0.2667
0.9991 13.0 351 1.6433 0.2444
0.9662 14.0 378 1.6269 0.2667
0.9752 15.0 405 1.6379 0.2444
0.9275 16.0 432 1.6386 0.2444
0.9112 17.0 459 1.6378 0.2667
0.8926 18.0 486 1.6345 0.2667
0.8698 19.0 513 1.6300 0.2444
0.8732 20.0 540 1.6217 0.2444
0.8587 21.0 567 1.6212 0.2667
0.8545 22.0 594 1.6207 0.2667
0.8339 23.0 621 1.6201 0.2444
0.8104 24.0 648 1.6072 0.2667
0.7957 25.0 675 1.6070 0.2667
0.8197 26.0 702 1.6043 0.2444
0.8076 27.0 729 1.6022 0.2667
0.7686 28.0 756 1.5925 0.2889
0.7691 29.0 783 1.5965 0.2889
0.7835 30.0 810 1.5836 0.2889
0.7441 31.0 837 1.5828 0.2889
0.7775 32.0 864 1.5709 0.2889
0.7317 33.0 891 1.5664 0.2889
0.7292 34.0 918 1.5626 0.2889
0.7179 35.0 945 1.5496 0.2667
0.7386 36.0 972 1.5502 0.2889
0.7342 37.0 999 1.5475 0.3111
0.734 38.0 1026 1.5457 0.3111
0.7069 39.0 1053 1.5425 0.3111
0.7143 40.0 1080 1.5429 0.3111
0.7105 41.0 1107 1.5401 0.3111
0.7189 42.0 1134 1.5394 0.3111
0.7216 43.0 1161 1.5376 0.3111
0.6896 44.0 1188 1.5358 0.3111
0.7099 45.0 1215 1.5345 0.3111
0.6751 46.0 1242 1.5331 0.3111
0.6824 47.0 1269 1.5327 0.3111
0.7027 48.0 1296 1.5326 0.3111
0.7357 49.0 1323 1.5326 0.3111
0.6799 50.0 1350 1.5326 0.3111

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0