hkivancoral's picture
End of training
3ac1de9
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_conflu_deneme_f1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4222222222222222

hushem_conflu_deneme_f1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 4.1726
  • Accuracy: 0.4222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4791 0.3333
2.0372 2.0 12 1.3991 0.2444
2.0372 3.0 18 1.9327 0.2444
1.2524 4.0 24 1.4584 0.3556
1.1547 5.0 30 1.3317 0.3556
1.1547 6.0 36 1.9319 0.3333
0.8748 7.0 42 1.3603 0.4222
0.8748 8.0 48 1.0979 0.5333
0.8902 9.0 54 1.9103 0.4222
0.6653 10.0 60 2.0004 0.3778
0.6653 11.0 66 2.0962 0.4
0.5253 12.0 72 1.2246 0.5111
0.5253 13.0 78 1.6731 0.4889
0.5223 14.0 84 2.1516 0.4
0.2968 15.0 90 2.5065 0.4
0.2968 16.0 96 2.0657 0.4444
0.4394 17.0 102 1.5876 0.4667
0.4394 18.0 108 2.1433 0.4
0.2725 19.0 114 1.4220 0.5556
0.1718 20.0 120 1.7558 0.4667
0.1718 21.0 126 2.3734 0.4667
0.0642 22.0 132 2.9683 0.4667
0.0642 23.0 138 2.9217 0.4889
0.0435 24.0 144 3.4732 0.4667
0.0409 25.0 150 3.8797 0.4667
0.0409 26.0 156 4.3387 0.4444
0.0418 27.0 162 3.9839 0.4444
0.0418 28.0 168 4.5122 0.4444
0.0035 29.0 174 4.2517 0.4444
0.0006 30.0 180 3.9958 0.4444
0.0006 31.0 186 3.9647 0.4444
0.0004 32.0 192 3.9928 0.4444
0.0004 33.0 198 4.0376 0.4222
0.0003 34.0 204 4.0736 0.4222
0.0002 35.0 210 4.1046 0.4222
0.0002 36.0 216 4.1284 0.4222
0.0002 37.0 222 4.1466 0.4222
0.0002 38.0 228 4.1585 0.4222
0.0002 39.0 234 4.1664 0.4222
0.0002 40.0 240 4.1704 0.4222
0.0002 41.0 246 4.1721 0.4222
0.0002 42.0 252 4.1726 0.4222
0.0002 43.0 258 4.1726 0.4222
0.0002 44.0 264 4.1726 0.4222
0.0002 45.0 270 4.1726 0.4222
0.0002 46.0 276 4.1726 0.4222
0.0002 47.0 282 4.1726 0.4222
0.0002 48.0 288 4.1726 0.4222
0.0002 49.0 294 4.1726 0.4222
0.0002 50.0 300 4.1726 0.4222

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1