hkivancoral's picture
End of training
e2e9878
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_beit_large_adamax_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9016666666666666

smids_10x_beit_large_adamax_001_fold3

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0324
  • Accuracy: 0.9017

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3438 1.0 750 0.3826 0.8517
0.2931 2.0 1500 0.3034 0.89
0.2025 3.0 2250 0.3971 0.8783
0.2582 4.0 3000 0.3086 0.8867
0.2483 5.0 3750 0.3346 0.8917
0.1606 6.0 4500 0.3908 0.8717
0.1236 7.0 5250 0.4286 0.8783
0.1197 8.0 6000 0.3887 0.9
0.0412 9.0 6750 0.4924 0.885
0.0384 10.0 7500 0.5551 0.89
0.0583 11.0 8250 0.4882 0.9017
0.0806 12.0 9000 0.5902 0.88
0.0489 13.0 9750 0.5212 0.88
0.0353 14.0 10500 0.5171 0.9
0.0094 15.0 11250 0.6341 0.895
0.0154 16.0 12000 0.5409 0.9133
0.0118 17.0 12750 0.6110 0.8833
0.0159 18.0 13500 0.6873 0.9033
0.0026 19.0 14250 0.7871 0.8983
0.0163 20.0 15000 0.6341 0.895
0.0002 21.0 15750 0.7139 0.9017
0.0006 22.0 16500 0.6717 0.9033
0.0266 23.0 17250 0.6268 0.895
0.0051 24.0 18000 0.6425 0.905
0.0 25.0 18750 0.7506 0.91
0.0004 26.0 19500 0.6864 0.9017
0.0002 27.0 20250 0.6111 0.9117
0.0163 28.0 21000 0.6875 0.9017
0.0001 29.0 21750 0.8050 0.8967
0.0002 30.0 22500 0.7397 0.8967
0.0004 31.0 23250 0.8218 0.8983
0.0 32.0 24000 0.8725 0.8983
0.0 33.0 24750 0.9662 0.8967
0.0 34.0 25500 0.9148 0.9083
0.0 35.0 26250 0.8492 0.9083
0.0001 36.0 27000 0.8264 0.9067
0.0 37.0 27750 0.8650 0.895
0.0004 38.0 28500 0.9030 0.91
0.0 39.0 29250 0.9540 0.9
0.0 40.0 30000 1.0292 0.8883
0.0 41.0 30750 1.0282 0.8917
0.0 42.0 31500 1.0128 0.8933
0.0 43.0 32250 1.0147 0.8983
0.0 44.0 33000 0.9709 0.8983
0.0 45.0 33750 0.9643 0.9067
0.0 46.0 34500 0.9770 0.9017
0.0 47.0 35250 1.0000 0.8983
0.0 48.0 36000 1.0223 0.9017
0.0 49.0 36750 1.0291 0.9017
0.0 50.0 37500 1.0324 0.9017

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2