hkivancoral's picture
End of training
24db63a
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_beit_large_sgd_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8733333333333333

smids_10x_beit_large_sgd_0001_fold5

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3210
  • Accuracy: 0.8733

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9567 1.0 750 1.0187 0.4617
0.813 2.0 1500 0.8588 0.6033
0.7071 3.0 2250 0.7412 0.6717
0.6056 4.0 3000 0.6548 0.7317
0.553 5.0 3750 0.5916 0.7767
0.5415 6.0 4500 0.5456 0.7983
0.4714 7.0 5250 0.5118 0.8083
0.4919 8.0 6000 0.4844 0.8133
0.4714 9.0 6750 0.4633 0.8167
0.408 10.0 7500 0.4458 0.8267
0.416 11.0 8250 0.4326 0.8317
0.4057 12.0 9000 0.4197 0.84
0.4411 13.0 9750 0.4091 0.8383
0.3787 14.0 10500 0.3999 0.84
0.4112 15.0 11250 0.3917 0.8433
0.3272 16.0 12000 0.3857 0.8433
0.3453 17.0 12750 0.3795 0.8467
0.2978 18.0 13500 0.3732 0.8467
0.3695 19.0 14250 0.3692 0.8533
0.3546 20.0 15000 0.3643 0.855
0.3274 21.0 15750 0.3603 0.8583
0.3708 22.0 16500 0.3566 0.8583
0.3177 23.0 17250 0.3530 0.8617
0.3259 24.0 18000 0.3501 0.865
0.3343 25.0 18750 0.3473 0.8683
0.3365 26.0 19500 0.3445 0.865
0.2524 27.0 20250 0.3419 0.865
0.3298 28.0 21000 0.3396 0.8667
0.3375 29.0 21750 0.3374 0.8667
0.3203 30.0 22500 0.3355 0.8683
0.2843 31.0 23250 0.3334 0.8683
0.3065 32.0 24000 0.3325 0.8667
0.3385 33.0 24750 0.3310 0.8717
0.2656 34.0 25500 0.3296 0.8717
0.3103 35.0 26250 0.3282 0.8733
0.3336 36.0 27000 0.3274 0.8717
0.2743 37.0 27750 0.3265 0.8733
0.3245 38.0 28500 0.3255 0.8717
0.321 39.0 29250 0.3249 0.8733
0.2652 40.0 30000 0.3240 0.8733
0.2925 41.0 30750 0.3236 0.875
0.3072 42.0 31500 0.3229 0.875
0.3317 43.0 32250 0.3226 0.875
0.2932 44.0 33000 0.3221 0.875
0.3178 45.0 33750 0.3218 0.8733
0.2606 46.0 34500 0.3214 0.875
0.3688 47.0 35250 0.3212 0.875
0.2811 48.0 36000 0.3211 0.8733
0.3003 49.0 36750 0.3211 0.8733
0.2418 50.0 37500 0.3210 0.8733

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2