hkivancoral's picture
End of training
1ae0c2a
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_10x_deit_tiny_rms_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8868552412645591

smids_10x_deit_tiny_rms_00001_fold2

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2287
  • Accuracy: 0.8869

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2512 1.0 750 0.3089 0.8735
0.118 2.0 1500 0.3336 0.8819
0.0986 3.0 2250 0.3751 0.8735
0.1049 4.0 3000 0.4900 0.8819
0.0487 5.0 3750 0.5969 0.8835
0.0234 6.0 4500 0.6491 0.8835
0.036 7.0 5250 0.7457 0.8869
0.001 8.0 6000 0.8757 0.8719
0.0148 9.0 6750 0.8581 0.8869
0.0298 10.0 7500 1.0727 0.8719
0.0019 11.0 8250 1.0234 0.8719
0.0146 12.0 9000 1.1199 0.8702
0.0069 13.0 9750 1.0417 0.8785
0.0001 14.0 10500 1.0745 0.8819
0.0 15.0 11250 1.0294 0.8802
0.0091 16.0 12000 1.1025 0.8802
0.0186 17.0 12750 1.0736 0.8835
0.0 18.0 13500 1.0297 0.8769
0.047 19.0 14250 1.1126 0.8819
0.0 20.0 15000 1.1842 0.8785
0.0 21.0 15750 1.2771 0.8686
0.0198 22.0 16500 1.1311 0.8869
0.0357 23.0 17250 1.1425 0.8869
0.0 24.0 18000 1.1413 0.8885
0.0 25.0 18750 1.1558 0.8852
0.0 26.0 19500 1.1246 0.8869
0.0271 27.0 20250 1.2507 0.8752
0.0 28.0 21000 1.1107 0.8902
0.0 29.0 21750 1.1979 0.8852
0.0 30.0 22500 1.2404 0.8869
0.0 31.0 23250 1.2332 0.8819
0.0 32.0 24000 1.3008 0.8819
0.0 33.0 24750 1.3101 0.8819
0.0 34.0 25500 1.3030 0.8869
0.0 35.0 26250 1.1931 0.8835
0.0 36.0 27000 1.2127 0.8802
0.0203 37.0 27750 1.1903 0.8802
0.0 38.0 28500 1.2617 0.8869
0.0 39.0 29250 1.1890 0.8935
0.0 40.0 30000 1.2276 0.8869
0.0 41.0 30750 1.1665 0.8885
0.0 42.0 31500 1.1610 0.8852
0.0 43.0 32250 1.2105 0.8902
0.0 44.0 33000 1.2243 0.8885
0.0031 45.0 33750 1.2267 0.8902
0.0 46.0 34500 1.2227 0.8885
0.0 47.0 35250 1.2254 0.8869
0.0 48.0 36000 1.2244 0.8852
0.0 49.0 36750 1.2292 0.8869
0.0 50.0 37500 1.2287 0.8869

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2