metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_10x_deit_tiny_rms_00001_fold2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8868552412645591
smids_10x_deit_tiny_rms_00001_fold2
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.2287
- Accuracy: 0.8869
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2512 | 1.0 | 750 | 0.3089 | 0.8735 |
0.118 | 2.0 | 1500 | 0.3336 | 0.8819 |
0.0986 | 3.0 | 2250 | 0.3751 | 0.8735 |
0.1049 | 4.0 | 3000 | 0.4900 | 0.8819 |
0.0487 | 5.0 | 3750 | 0.5969 | 0.8835 |
0.0234 | 6.0 | 4500 | 0.6491 | 0.8835 |
0.036 | 7.0 | 5250 | 0.7457 | 0.8869 |
0.001 | 8.0 | 6000 | 0.8757 | 0.8719 |
0.0148 | 9.0 | 6750 | 0.8581 | 0.8869 |
0.0298 | 10.0 | 7500 | 1.0727 | 0.8719 |
0.0019 | 11.0 | 8250 | 1.0234 | 0.8719 |
0.0146 | 12.0 | 9000 | 1.1199 | 0.8702 |
0.0069 | 13.0 | 9750 | 1.0417 | 0.8785 |
0.0001 | 14.0 | 10500 | 1.0745 | 0.8819 |
0.0 | 15.0 | 11250 | 1.0294 | 0.8802 |
0.0091 | 16.0 | 12000 | 1.1025 | 0.8802 |
0.0186 | 17.0 | 12750 | 1.0736 | 0.8835 |
0.0 | 18.0 | 13500 | 1.0297 | 0.8769 |
0.047 | 19.0 | 14250 | 1.1126 | 0.8819 |
0.0 | 20.0 | 15000 | 1.1842 | 0.8785 |
0.0 | 21.0 | 15750 | 1.2771 | 0.8686 |
0.0198 | 22.0 | 16500 | 1.1311 | 0.8869 |
0.0357 | 23.0 | 17250 | 1.1425 | 0.8869 |
0.0 | 24.0 | 18000 | 1.1413 | 0.8885 |
0.0 | 25.0 | 18750 | 1.1558 | 0.8852 |
0.0 | 26.0 | 19500 | 1.1246 | 0.8869 |
0.0271 | 27.0 | 20250 | 1.2507 | 0.8752 |
0.0 | 28.0 | 21000 | 1.1107 | 0.8902 |
0.0 | 29.0 | 21750 | 1.1979 | 0.8852 |
0.0 | 30.0 | 22500 | 1.2404 | 0.8869 |
0.0 | 31.0 | 23250 | 1.2332 | 0.8819 |
0.0 | 32.0 | 24000 | 1.3008 | 0.8819 |
0.0 | 33.0 | 24750 | 1.3101 | 0.8819 |
0.0 | 34.0 | 25500 | 1.3030 | 0.8869 |
0.0 | 35.0 | 26250 | 1.1931 | 0.8835 |
0.0 | 36.0 | 27000 | 1.2127 | 0.8802 |
0.0203 | 37.0 | 27750 | 1.1903 | 0.8802 |
0.0 | 38.0 | 28500 | 1.2617 | 0.8869 |
0.0 | 39.0 | 29250 | 1.1890 | 0.8935 |
0.0 | 40.0 | 30000 | 1.2276 | 0.8869 |
0.0 | 41.0 | 30750 | 1.1665 | 0.8885 |
0.0 | 42.0 | 31500 | 1.1610 | 0.8852 |
0.0 | 43.0 | 32250 | 1.2105 | 0.8902 |
0.0 | 44.0 | 33000 | 1.2243 | 0.8885 |
0.0031 | 45.0 | 33750 | 1.2267 | 0.8902 |
0.0 | 46.0 | 34500 | 1.2227 | 0.8885 |
0.0 | 47.0 | 35250 | 1.2254 | 0.8869 |
0.0 | 48.0 | 36000 | 1.2244 | 0.8852 |
0.0 | 49.0 | 36750 | 1.2292 | 0.8869 |
0.0 | 50.0 | 37500 | 1.2287 | 0.8869 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2