hkivancoral's picture
End of training
87f7936
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_adamax_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8883333333333333

smids_1x_deit_tiny_adamax_0001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7938
  • Accuracy: 0.8883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3497 1.0 75 0.3438 0.8583
0.2686 2.0 150 0.4010 0.835
0.2132 3.0 225 0.3099 0.895
0.1475 4.0 300 0.4693 0.8433
0.07 5.0 375 0.3951 0.8967
0.0348 6.0 450 0.4706 0.8833
0.1076 7.0 525 0.4897 0.8817
0.0371 8.0 600 0.5659 0.8817
0.0539 9.0 675 0.5525 0.8917
0.0289 10.0 750 0.6768 0.8783
0.053 11.0 825 0.5526 0.9017
0.0394 12.0 900 0.6804 0.8867
0.0028 13.0 975 0.6916 0.8717
0.0003 14.0 1050 0.6282 0.8983
0.0001 15.0 1125 0.6544 0.8883
0.0001 16.0 1200 0.6284 0.9
0.0001 17.0 1275 0.6590 0.89
0.0087 18.0 1350 0.7168 0.885
0.0041 19.0 1425 0.6749 0.8933
0.0108 20.0 1500 0.7413 0.885
0.0001 21.0 1575 0.6857 0.8867
0.0 22.0 1650 0.7103 0.8833
0.0055 23.0 1725 0.7459 0.8883
0.0 24.0 1800 0.7428 0.8833
0.0 25.0 1875 0.7179 0.885
0.0041 26.0 1950 0.7150 0.8883
0.0 27.0 2025 0.7370 0.8833
0.0 28.0 2100 0.7342 0.885
0.0 29.0 2175 0.7378 0.8833
0.0 30.0 2250 0.7711 0.8883
0.0 31.0 2325 0.7434 0.8883
0.0 32.0 2400 0.7467 0.8883
0.0 33.0 2475 0.7543 0.885
0.0049 34.0 2550 0.7604 0.885
0.0078 35.0 2625 0.7800 0.8833
0.0032 36.0 2700 0.7784 0.885
0.0024 37.0 2775 0.7619 0.89
0.0 38.0 2850 0.7714 0.89
0.0 39.0 2925 0.7703 0.8883
0.0 40.0 3000 0.7842 0.885
0.0 41.0 3075 0.7774 0.8867
0.0028 42.0 3150 0.7773 0.8883
0.003 43.0 3225 0.7810 0.8867
0.0 44.0 3300 0.7850 0.8867
0.0027 45.0 3375 0.7856 0.8867
0.0025 46.0 3450 0.7889 0.8883
0.0052 47.0 3525 0.7872 0.8883
0.0 48.0 3600 0.7928 0.8883
0.0 49.0 3675 0.7922 0.8867
0.0045 50.0 3750 0.7938 0.8883

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0