metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_tiny_adamax_0001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8883333333333333
smids_1x_deit_tiny_adamax_0001_fold3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.7938
- Accuracy: 0.8883
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3497 | 1.0 | 75 | 0.3438 | 0.8583 |
0.2686 | 2.0 | 150 | 0.4010 | 0.835 |
0.2132 | 3.0 | 225 | 0.3099 | 0.895 |
0.1475 | 4.0 | 300 | 0.4693 | 0.8433 |
0.07 | 5.0 | 375 | 0.3951 | 0.8967 |
0.0348 | 6.0 | 450 | 0.4706 | 0.8833 |
0.1076 | 7.0 | 525 | 0.4897 | 0.8817 |
0.0371 | 8.0 | 600 | 0.5659 | 0.8817 |
0.0539 | 9.0 | 675 | 0.5525 | 0.8917 |
0.0289 | 10.0 | 750 | 0.6768 | 0.8783 |
0.053 | 11.0 | 825 | 0.5526 | 0.9017 |
0.0394 | 12.0 | 900 | 0.6804 | 0.8867 |
0.0028 | 13.0 | 975 | 0.6916 | 0.8717 |
0.0003 | 14.0 | 1050 | 0.6282 | 0.8983 |
0.0001 | 15.0 | 1125 | 0.6544 | 0.8883 |
0.0001 | 16.0 | 1200 | 0.6284 | 0.9 |
0.0001 | 17.0 | 1275 | 0.6590 | 0.89 |
0.0087 | 18.0 | 1350 | 0.7168 | 0.885 |
0.0041 | 19.0 | 1425 | 0.6749 | 0.8933 |
0.0108 | 20.0 | 1500 | 0.7413 | 0.885 |
0.0001 | 21.0 | 1575 | 0.6857 | 0.8867 |
0.0 | 22.0 | 1650 | 0.7103 | 0.8833 |
0.0055 | 23.0 | 1725 | 0.7459 | 0.8883 |
0.0 | 24.0 | 1800 | 0.7428 | 0.8833 |
0.0 | 25.0 | 1875 | 0.7179 | 0.885 |
0.0041 | 26.0 | 1950 | 0.7150 | 0.8883 |
0.0 | 27.0 | 2025 | 0.7370 | 0.8833 |
0.0 | 28.0 | 2100 | 0.7342 | 0.885 |
0.0 | 29.0 | 2175 | 0.7378 | 0.8833 |
0.0 | 30.0 | 2250 | 0.7711 | 0.8883 |
0.0 | 31.0 | 2325 | 0.7434 | 0.8883 |
0.0 | 32.0 | 2400 | 0.7467 | 0.8883 |
0.0 | 33.0 | 2475 | 0.7543 | 0.885 |
0.0049 | 34.0 | 2550 | 0.7604 | 0.885 |
0.0078 | 35.0 | 2625 | 0.7800 | 0.8833 |
0.0032 | 36.0 | 2700 | 0.7784 | 0.885 |
0.0024 | 37.0 | 2775 | 0.7619 | 0.89 |
0.0 | 38.0 | 2850 | 0.7714 | 0.89 |
0.0 | 39.0 | 2925 | 0.7703 | 0.8883 |
0.0 | 40.0 | 3000 | 0.7842 | 0.885 |
0.0 | 41.0 | 3075 | 0.7774 | 0.8867 |
0.0028 | 42.0 | 3150 | 0.7773 | 0.8883 |
0.003 | 43.0 | 3225 | 0.7810 | 0.8867 |
0.0 | 44.0 | 3300 | 0.7850 | 0.8867 |
0.0027 | 45.0 | 3375 | 0.7856 | 0.8867 |
0.0025 | 46.0 | 3450 | 0.7889 | 0.8883 |
0.0052 | 47.0 | 3525 | 0.7872 | 0.8883 |
0.0 | 48.0 | 3600 | 0.7928 | 0.8883 |
0.0 | 49.0 | 3675 | 0.7922 | 0.8867 |
0.0045 | 50.0 | 3750 | 0.7938 | 0.8883 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0