hkivancoral's picture
End of training
41b0e8a
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_1x_deit_tiny_adamax_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.855

smids_1x_deit_tiny_adamax_001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0690
  • Accuracy: 0.855

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.7211 1.0 75 0.5344 0.7933
0.4907 2.0 150 0.4899 0.8217
0.4082 3.0 225 0.3985 0.8433
0.5374 4.0 300 0.4992 0.7867
0.3999 5.0 375 0.4245 0.8317
0.2788 6.0 450 0.4489 0.8333
0.2587 7.0 525 0.4635 0.8433
0.4094 8.0 600 0.4633 0.8517
0.2907 9.0 675 0.3956 0.855
0.1834 10.0 750 0.5651 0.8483
0.1936 11.0 825 0.5738 0.8317
0.0829 12.0 900 0.6121 0.8517
0.1614 13.0 975 0.7303 0.8317
0.1046 14.0 1050 0.6603 0.8333
0.0809 15.0 1125 0.6576 0.835
0.0884 16.0 1200 0.7089 0.8433
0.0489 17.0 1275 0.6901 0.855
0.1163 18.0 1350 0.9715 0.8083
0.0364 19.0 1425 0.8902 0.8417
0.0696 20.0 1500 0.9452 0.8317
0.0058 21.0 1575 1.0231 0.845
0.0448 22.0 1650 0.8657 0.855
0.0768 23.0 1725 1.0329 0.8367
0.0352 24.0 1800 0.8052 0.8467
0.0563 25.0 1875 0.7949 0.84
0.0082 26.0 1950 1.0964 0.8283
0.0281 27.0 2025 1.0752 0.8283
0.0273 28.0 2100 0.9073 0.8567
0.0259 29.0 2175 0.9898 0.8467
0.0073 30.0 2250 0.9057 0.855
0.0002 31.0 2325 1.1211 0.8333
0.0001 32.0 2400 0.9915 0.8533
0.0124 33.0 2475 1.0550 0.8517
0.0001 34.0 2550 1.0250 0.8533
0.0062 35.0 2625 1.0105 0.8533
0.0001 36.0 2700 1.0089 0.8533
0.0047 37.0 2775 1.0162 0.855
0.0 38.0 2850 1.0334 0.85
0.0 39.0 2925 1.0457 0.85
0.0 40.0 3000 1.0361 0.8567
0.0039 41.0 3075 1.0596 0.855
0.0 42.0 3150 1.0411 0.8567
0.0081 43.0 3225 1.0513 0.855
0.0001 44.0 3300 1.0505 0.855
0.0027 45.0 3375 1.0576 0.8583
0.0 46.0 3450 1.0612 0.8583
0.0065 47.0 3525 1.0629 0.8567
0.0058 48.0 3600 1.0684 0.8567
0.0 49.0 3675 1.0680 0.8567
0.0041 50.0 3750 1.0690 0.855

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0