metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_deit_tiny_adamax_001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.855
smids_1x_deit_tiny_adamax_001_fold5
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0690
- Accuracy: 0.855
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7211 | 1.0 | 75 | 0.5344 | 0.7933 |
0.4907 | 2.0 | 150 | 0.4899 | 0.8217 |
0.4082 | 3.0 | 225 | 0.3985 | 0.8433 |
0.5374 | 4.0 | 300 | 0.4992 | 0.7867 |
0.3999 | 5.0 | 375 | 0.4245 | 0.8317 |
0.2788 | 6.0 | 450 | 0.4489 | 0.8333 |
0.2587 | 7.0 | 525 | 0.4635 | 0.8433 |
0.4094 | 8.0 | 600 | 0.4633 | 0.8517 |
0.2907 | 9.0 | 675 | 0.3956 | 0.855 |
0.1834 | 10.0 | 750 | 0.5651 | 0.8483 |
0.1936 | 11.0 | 825 | 0.5738 | 0.8317 |
0.0829 | 12.0 | 900 | 0.6121 | 0.8517 |
0.1614 | 13.0 | 975 | 0.7303 | 0.8317 |
0.1046 | 14.0 | 1050 | 0.6603 | 0.8333 |
0.0809 | 15.0 | 1125 | 0.6576 | 0.835 |
0.0884 | 16.0 | 1200 | 0.7089 | 0.8433 |
0.0489 | 17.0 | 1275 | 0.6901 | 0.855 |
0.1163 | 18.0 | 1350 | 0.9715 | 0.8083 |
0.0364 | 19.0 | 1425 | 0.8902 | 0.8417 |
0.0696 | 20.0 | 1500 | 0.9452 | 0.8317 |
0.0058 | 21.0 | 1575 | 1.0231 | 0.845 |
0.0448 | 22.0 | 1650 | 0.8657 | 0.855 |
0.0768 | 23.0 | 1725 | 1.0329 | 0.8367 |
0.0352 | 24.0 | 1800 | 0.8052 | 0.8467 |
0.0563 | 25.0 | 1875 | 0.7949 | 0.84 |
0.0082 | 26.0 | 1950 | 1.0964 | 0.8283 |
0.0281 | 27.0 | 2025 | 1.0752 | 0.8283 |
0.0273 | 28.0 | 2100 | 0.9073 | 0.8567 |
0.0259 | 29.0 | 2175 | 0.9898 | 0.8467 |
0.0073 | 30.0 | 2250 | 0.9057 | 0.855 |
0.0002 | 31.0 | 2325 | 1.1211 | 0.8333 |
0.0001 | 32.0 | 2400 | 0.9915 | 0.8533 |
0.0124 | 33.0 | 2475 | 1.0550 | 0.8517 |
0.0001 | 34.0 | 2550 | 1.0250 | 0.8533 |
0.0062 | 35.0 | 2625 | 1.0105 | 0.8533 |
0.0001 | 36.0 | 2700 | 1.0089 | 0.8533 |
0.0047 | 37.0 | 2775 | 1.0162 | 0.855 |
0.0 | 38.0 | 2850 | 1.0334 | 0.85 |
0.0 | 39.0 | 2925 | 1.0457 | 0.85 |
0.0 | 40.0 | 3000 | 1.0361 | 0.8567 |
0.0039 | 41.0 | 3075 | 1.0596 | 0.855 |
0.0 | 42.0 | 3150 | 1.0411 | 0.8567 |
0.0081 | 43.0 | 3225 | 1.0513 | 0.855 |
0.0001 | 44.0 | 3300 | 1.0505 | 0.855 |
0.0027 | 45.0 | 3375 | 1.0576 | 0.8583 |
0.0 | 46.0 | 3450 | 1.0612 | 0.8583 |
0.0065 | 47.0 | 3525 | 1.0629 | 0.8567 |
0.0058 | 48.0 | 3600 | 1.0684 | 0.8567 |
0.0 | 49.0 | 3675 | 1.0680 | 0.8567 |
0.0041 | 50.0 | 3750 | 1.0690 | 0.855 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0