hkivancoral's picture
End of training
5400c9d
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_base_rms_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8933333333333333

smids_3x_deit_base_rms_0001_fold5

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1319
  • Accuracy: 0.8933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3269 1.0 225 0.4237 0.8533
0.1863 2.0 450 0.4104 0.8633
0.1323 3.0 675 0.3455 0.8767
0.0674 4.0 900 0.4806 0.895
0.0524 5.0 1125 0.4637 0.8783
0.0407 6.0 1350 0.4567 0.89
0.0468 7.0 1575 0.5568 0.8767
0.0239 8.0 1800 0.6027 0.8783
0.0176 9.0 2025 0.6627 0.8817
0.0132 10.0 2250 0.7320 0.8683
0.0166 11.0 2475 0.6923 0.88
0.11 12.0 2700 0.5801 0.8883
0.0376 13.0 2925 0.4794 0.89
0.0285 14.0 3150 0.6473 0.8883
0.0192 15.0 3375 0.7068 0.8967
0.0041 16.0 3600 0.7011 0.895
0.012 17.0 3825 0.6525 0.9017
0.03 18.0 4050 0.6508 0.91
0.0251 19.0 4275 0.7493 0.8967
0.0108 20.0 4500 0.7077 0.895
0.0009 21.0 4725 0.6790 0.89
0.0002 22.0 4950 0.7411 0.8967
0.0264 23.0 5175 0.7794 0.8983
0.0051 24.0 5400 0.9553 0.8883
0.0221 25.0 5625 0.7771 0.905
0.0315 26.0 5850 0.7638 0.9
0.003 27.0 6075 0.8047 0.9
0.0125 28.0 6300 0.7560 0.9
0.0039 29.0 6525 0.7149 0.9067
0.0 30.0 6750 0.8257 0.9
0.0 31.0 6975 0.8249 0.9133
0.0 32.0 7200 0.8553 0.9033
0.01 33.0 7425 0.9333 0.895
0.0 34.0 7650 0.9286 0.9067
0.0024 35.0 7875 0.9413 0.8983
0.0 36.0 8100 0.8868 0.9083
0.0039 37.0 8325 0.9484 0.9033
0.0 38.0 8550 0.9617 0.9033
0.0 39.0 8775 0.9572 0.9017
0.0 40.0 9000 1.0465 0.8933
0.0 41.0 9225 1.0197 0.8983
0.0 42.0 9450 1.0477 0.895
0.0029 43.0 9675 1.0659 0.8983
0.0 44.0 9900 1.0846 0.8967
0.0 45.0 10125 1.1008 0.8983
0.0 46.0 10350 1.1123 0.8917
0.0 47.0 10575 1.1192 0.8933
0.0 48.0 10800 1.1251 0.8933
0.0 49.0 11025 1.1289 0.8933
0.0 50.0 11250 1.1319 0.8933

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2