hkivancoral's picture
End of training
1419f7a
metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_base_sgd_00001_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.44908180300500833

smids_3x_deit_base_sgd_00001_fold1

This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0659
  • Accuracy: 0.4491

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1289 1.0 226 1.0936 0.3873
1.088 2.0 452 1.0923 0.3907
1.1393 3.0 678 1.0911 0.3940
1.1082 4.0 904 1.0899 0.3957
1.1039 5.0 1130 1.0887 0.3973
1.1198 6.0 1356 1.0876 0.3957
1.1055 7.0 1582 1.0865 0.3957
1.1209 8.0 1808 1.0854 0.3973
1.0984 9.0 2034 1.0844 0.3990
1.0834 10.0 2260 1.0834 0.4040
1.1107 11.0 2486 1.0825 0.4057
1.1106 12.0 2712 1.0815 0.4107
1.0951 13.0 2938 1.0807 0.4107
1.084 14.0 3164 1.0798 0.4140
1.0913 15.0 3390 1.0790 0.4224
1.0879 16.0 3616 1.0781 0.4274
1.0942 17.0 3842 1.0774 0.4290
1.1034 18.0 4068 1.0766 0.4290
1.0749 19.0 4294 1.0759 0.4290
1.0856 20.0 4520 1.0752 0.4341
1.0907 21.0 4746 1.0745 0.4407
1.0776 22.0 4972 1.0739 0.4424
1.0863 23.0 5198 1.0733 0.4407
1.0887 24.0 5424 1.0727 0.4424
1.0775 25.0 5650 1.0722 0.4474
1.092 26.0 5876 1.0716 0.4457
1.09 27.0 6102 1.0711 0.4424
1.0932 28.0 6328 1.0707 0.4391
1.0761 29.0 6554 1.0702 0.4407
1.0937 30.0 6780 1.0698 0.4407
1.0661 31.0 7006 1.0694 0.4424
1.0826 32.0 7232 1.0690 0.4424
1.0898 33.0 7458 1.0686 0.4407
1.0784 34.0 7684 1.0683 0.4457
1.0944 35.0 7910 1.0680 0.4457
1.08 36.0 8136 1.0677 0.4474
1.0796 37.0 8362 1.0674 0.4474
1.08 38.0 8588 1.0672 0.4491
1.0835 39.0 8814 1.0670 0.4491
1.0952 40.0 9040 1.0668 0.4491
1.0844 41.0 9266 1.0666 0.4474
1.0907 42.0 9492 1.0664 0.4474
1.087 43.0 9718 1.0663 0.4474
1.0798 44.0 9944 1.0662 0.4474
1.0672 45.0 10170 1.0661 0.4457
1.0874 46.0 10396 1.0660 0.4457
1.0866 47.0 10622 1.0660 0.4457
1.0871 48.0 10848 1.0660 0.4474
1.0775 49.0 11074 1.0659 0.4491
1.0886 50.0 11300 1.0659 0.4491

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2