metadata
license: apache-2.0
base_model: facebook/deit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_deit_base_sgd_001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8866666666666667
smids_3x_deit_base_sgd_001_fold3
This model is a fine-tuned version of facebook/deit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2808
- Accuracy: 0.8867
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.957 | 1.0 | 225 | 0.9484 | 0.6067 |
0.7319 | 2.0 | 450 | 0.7399 | 0.7417 |
0.5675 | 3.0 | 675 | 0.6023 | 0.8 |
0.5071 | 4.0 | 900 | 0.5170 | 0.8183 |
0.4486 | 5.0 | 1125 | 0.4641 | 0.8317 |
0.3985 | 6.0 | 1350 | 0.4275 | 0.85 |
0.3723 | 7.0 | 1575 | 0.4010 | 0.8483 |
0.3723 | 8.0 | 1800 | 0.3821 | 0.8533 |
0.3669 | 9.0 | 2025 | 0.3688 | 0.8617 |
0.3526 | 10.0 | 2250 | 0.3586 | 0.8667 |
0.3131 | 11.0 | 2475 | 0.3476 | 0.8733 |
0.3182 | 12.0 | 2700 | 0.3438 | 0.8717 |
0.329 | 13.0 | 2925 | 0.3317 | 0.875 |
0.2936 | 14.0 | 3150 | 0.3264 | 0.8733 |
0.281 | 15.0 | 3375 | 0.3211 | 0.875 |
0.29 | 16.0 | 3600 | 0.3177 | 0.875 |
0.3306 | 17.0 | 3825 | 0.3133 | 0.8767 |
0.268 | 18.0 | 4050 | 0.3109 | 0.875 |
0.2813 | 19.0 | 4275 | 0.3073 | 0.8817 |
0.29 | 20.0 | 4500 | 0.3041 | 0.8833 |
0.2543 | 21.0 | 4725 | 0.3034 | 0.8833 |
0.2485 | 22.0 | 4950 | 0.3036 | 0.8833 |
0.2389 | 23.0 | 5175 | 0.2976 | 0.885 |
0.2585 | 24.0 | 5400 | 0.2973 | 0.885 |
0.2265 | 25.0 | 5625 | 0.2954 | 0.8867 |
0.2806 | 26.0 | 5850 | 0.2939 | 0.8867 |
0.2023 | 27.0 | 6075 | 0.2926 | 0.8867 |
0.2462 | 28.0 | 6300 | 0.2897 | 0.885 |
0.2516 | 29.0 | 6525 | 0.2898 | 0.8867 |
0.2125 | 30.0 | 6750 | 0.2889 | 0.8867 |
0.2359 | 31.0 | 6975 | 0.2881 | 0.8883 |
0.2277 | 32.0 | 7200 | 0.2865 | 0.8867 |
0.2555 | 33.0 | 7425 | 0.2855 | 0.8883 |
0.202 | 34.0 | 7650 | 0.2847 | 0.8883 |
0.2329 | 35.0 | 7875 | 0.2859 | 0.8883 |
0.262 | 36.0 | 8100 | 0.2851 | 0.8883 |
0.2072 | 37.0 | 8325 | 0.2831 | 0.8867 |
0.2187 | 38.0 | 8550 | 0.2836 | 0.8867 |
0.2311 | 39.0 | 8775 | 0.2822 | 0.8867 |
0.2221 | 40.0 | 9000 | 0.2824 | 0.8867 |
0.2051 | 41.0 | 9225 | 0.2822 | 0.8867 |
0.2267 | 42.0 | 9450 | 0.2815 | 0.8867 |
0.2187 | 43.0 | 9675 | 0.2815 | 0.8867 |
0.2138 | 44.0 | 9900 | 0.2815 | 0.8867 |
0.2129 | 45.0 | 10125 | 0.2813 | 0.8867 |
0.2034 | 46.0 | 10350 | 0.2810 | 0.8867 |
0.2287 | 47.0 | 10575 | 0.2808 | 0.8867 |
0.2051 | 48.0 | 10800 | 0.2807 | 0.8867 |
0.256 | 49.0 | 11025 | 0.2807 | 0.8867 |
0.2173 | 50.0 | 11250 | 0.2808 | 0.8867 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2