metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_deit_tiny_rms_0001_fold3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.89
smids_3x_deit_tiny_rms_0001_fold3
This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0441
- Accuracy: 0.89
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.384 | 1.0 | 225 | 0.3552 | 0.8583 |
0.2084 | 2.0 | 450 | 0.3480 | 0.8767 |
0.201 | 3.0 | 675 | 0.4132 | 0.8717 |
0.1086 | 4.0 | 900 | 0.3792 | 0.8883 |
0.1243 | 5.0 | 1125 | 0.4370 | 0.8733 |
0.1107 | 6.0 | 1350 | 0.4615 | 0.8783 |
0.0664 | 7.0 | 1575 | 0.6966 | 0.865 |
0.0782 | 8.0 | 1800 | 0.6855 | 0.8733 |
0.0473 | 9.0 | 2025 | 0.5753 | 0.875 |
0.0605 | 10.0 | 2250 | 0.7929 | 0.87 |
0.0782 | 11.0 | 2475 | 0.6012 | 0.8933 |
0.0086 | 12.0 | 2700 | 0.6879 | 0.8817 |
0.0115 | 13.0 | 2925 | 0.8156 | 0.86 |
0.0467 | 14.0 | 3150 | 1.0598 | 0.8467 |
0.1265 | 15.0 | 3375 | 0.7615 | 0.875 |
0.0039 | 16.0 | 3600 | 0.7484 | 0.8767 |
0.0138 | 17.0 | 3825 | 0.8169 | 0.87 |
0.0039 | 18.0 | 4050 | 0.8702 | 0.8783 |
0.0077 | 19.0 | 4275 | 0.8767 | 0.8867 |
0.0399 | 20.0 | 4500 | 0.8253 | 0.8817 |
0.0266 | 21.0 | 4725 | 1.0317 | 0.8567 |
0.0092 | 22.0 | 4950 | 1.0021 | 0.8683 |
0.0011 | 23.0 | 5175 | 0.9409 | 0.8867 |
0.0242 | 24.0 | 5400 | 0.9565 | 0.8733 |
0.0188 | 25.0 | 5625 | 0.8702 | 0.88 |
0.0079 | 26.0 | 5850 | 0.8620 | 0.8783 |
0.009 | 27.0 | 6075 | 0.8382 | 0.8883 |
0.0334 | 28.0 | 6300 | 0.8240 | 0.885 |
0.0091 | 29.0 | 6525 | 0.9309 | 0.88 |
0.0428 | 30.0 | 6750 | 0.8520 | 0.8817 |
0.0064 | 31.0 | 6975 | 0.9518 | 0.8833 |
0.0205 | 32.0 | 7200 | 0.8143 | 0.8983 |
0.0358 | 33.0 | 7425 | 1.0040 | 0.8867 |
0.0085 | 34.0 | 7650 | 0.9891 | 0.88 |
0.0 | 35.0 | 7875 | 0.9233 | 0.9 |
0.0 | 36.0 | 8100 | 0.9033 | 0.8917 |
0.0025 | 37.0 | 8325 | 0.9886 | 0.895 |
0.001 | 38.0 | 8550 | 1.1074 | 0.87 |
0.0 | 39.0 | 8775 | 1.0071 | 0.8883 |
0.0 | 40.0 | 9000 | 1.0033 | 0.8883 |
0.0 | 41.0 | 9225 | 1.0288 | 0.8867 |
0.0 | 42.0 | 9450 | 1.0506 | 0.8833 |
0.0 | 43.0 | 9675 | 1.0220 | 0.8883 |
0.0 | 44.0 | 9900 | 1.0225 | 0.885 |
0.0 | 45.0 | 10125 | 1.0227 | 0.8867 |
0.0 | 46.0 | 10350 | 1.0356 | 0.8867 |
0.0027 | 47.0 | 10575 | 1.0358 | 0.8917 |
0.0 | 48.0 | 10800 | 1.0430 | 0.89 |
0.0 | 49.0 | 11025 | 1.0451 | 0.89 |
0.0 | 50.0 | 11250 | 1.0441 | 0.89 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.1.1+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2