hkivancoral's picture
End of training
e57a711
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_rms_0001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.89

smids_3x_deit_tiny_rms_0001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0441
  • Accuracy: 0.89

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.384 1.0 225 0.3552 0.8583
0.2084 2.0 450 0.3480 0.8767
0.201 3.0 675 0.4132 0.8717
0.1086 4.0 900 0.3792 0.8883
0.1243 5.0 1125 0.4370 0.8733
0.1107 6.0 1350 0.4615 0.8783
0.0664 7.0 1575 0.6966 0.865
0.0782 8.0 1800 0.6855 0.8733
0.0473 9.0 2025 0.5753 0.875
0.0605 10.0 2250 0.7929 0.87
0.0782 11.0 2475 0.6012 0.8933
0.0086 12.0 2700 0.6879 0.8817
0.0115 13.0 2925 0.8156 0.86
0.0467 14.0 3150 1.0598 0.8467
0.1265 15.0 3375 0.7615 0.875
0.0039 16.0 3600 0.7484 0.8767
0.0138 17.0 3825 0.8169 0.87
0.0039 18.0 4050 0.8702 0.8783
0.0077 19.0 4275 0.8767 0.8867
0.0399 20.0 4500 0.8253 0.8817
0.0266 21.0 4725 1.0317 0.8567
0.0092 22.0 4950 1.0021 0.8683
0.0011 23.0 5175 0.9409 0.8867
0.0242 24.0 5400 0.9565 0.8733
0.0188 25.0 5625 0.8702 0.88
0.0079 26.0 5850 0.8620 0.8783
0.009 27.0 6075 0.8382 0.8883
0.0334 28.0 6300 0.8240 0.885
0.0091 29.0 6525 0.9309 0.88
0.0428 30.0 6750 0.8520 0.8817
0.0064 31.0 6975 0.9518 0.8833
0.0205 32.0 7200 0.8143 0.8983
0.0358 33.0 7425 1.0040 0.8867
0.0085 34.0 7650 0.9891 0.88
0.0 35.0 7875 0.9233 0.9
0.0 36.0 8100 0.9033 0.8917
0.0025 37.0 8325 0.9886 0.895
0.001 38.0 8550 1.1074 0.87
0.0 39.0 8775 1.0071 0.8883
0.0 40.0 9000 1.0033 0.8883
0.0 41.0 9225 1.0288 0.8867
0.0 42.0 9450 1.0506 0.8833
0.0 43.0 9675 1.0220 0.8883
0.0 44.0 9900 1.0225 0.885
0.0 45.0 10125 1.0227 0.8867
0.0 46.0 10350 1.0356 0.8867
0.0027 47.0 10575 1.0358 0.8917
0.0 48.0 10800 1.0430 0.89
0.0 49.0 11025 1.0451 0.89
0.0 50.0 11250 1.0441 0.89

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2