hkivancoral's picture
End of training
50eb49d
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_rms_001_fold3
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7016666666666667

smids_3x_deit_tiny_rms_001_fold3

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7451
  • Accuracy: 0.7017

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0251 1.0 225 0.9264 0.5433
0.8762 2.0 450 0.9033 0.5383
0.9046 3.0 675 0.8597 0.52
0.8168 4.0 900 0.8502 0.5867
0.8182 5.0 1125 0.8396 0.5417
0.8366 6.0 1350 0.8032 0.64
0.7873 7.0 1575 0.7872 0.6367
0.8222 8.0 1800 0.7892 0.605
0.8096 9.0 2025 0.8074 0.63
0.7866 10.0 2250 0.8155 0.5667
0.7895 11.0 2475 0.7692 0.6433
0.7721 12.0 2700 0.8106 0.6017
0.781 13.0 2925 0.7742 0.6533
0.7888 14.0 3150 0.7929 0.6117
0.7617 15.0 3375 0.7600 0.6683
0.8324 16.0 3600 0.7701 0.6433
0.7598 17.0 3825 0.8095 0.6333
0.7476 18.0 4050 0.7803 0.6033
0.7071 19.0 4275 0.7505 0.6683
0.7193 20.0 4500 0.7784 0.6183
0.6927 21.0 4725 0.7879 0.6467
0.666 22.0 4950 0.7212 0.6967
0.6763 23.0 5175 0.7194 0.6833
0.6715 24.0 5400 0.7919 0.6367
0.7294 25.0 5625 0.7785 0.6733
0.6936 26.0 5850 0.7216 0.6983
0.6322 27.0 6075 0.8000 0.6833
0.6761 28.0 6300 0.7942 0.6183
0.688 29.0 6525 0.7281 0.6567
0.6228 30.0 6750 0.7332 0.6567
0.6366 31.0 6975 0.7601 0.6717
0.6176 32.0 7200 0.7157 0.6883
0.6636 33.0 7425 0.7555 0.6567
0.6315 34.0 7650 0.7242 0.665
0.5915 35.0 7875 0.6940 0.6783
0.6259 36.0 8100 0.6760 0.6917
0.6325 37.0 8325 0.6834 0.6967
0.5846 38.0 8550 0.7137 0.6733
0.6018 39.0 8775 0.6801 0.6933
0.5692 40.0 9000 0.6837 0.6883
0.5234 41.0 9225 0.6917 0.6833
0.5543 42.0 9450 0.6614 0.7017
0.5363 43.0 9675 0.6720 0.7017
0.5474 44.0 9900 0.6703 0.7067
0.5234 45.0 10125 0.7035 0.6983
0.4923 46.0 10350 0.7111 0.7017
0.5435 47.0 10575 0.6985 0.7133
0.4932 48.0 10800 0.7085 0.7133
0.486 49.0 11025 0.7485 0.7033
0.4701 50.0 11250 0.7451 0.7017

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2