hkivancoral's picture
End of training
b4b4d8b
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: smids_3x_deit_tiny_sgd_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.39166666666666666

smids_3x_deit_tiny_sgd_00001_fold5

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1096
  • Accuracy: 0.3917

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3197 1.0 225 1.3390 0.3517
1.27 2.0 450 1.3176 0.3517
1.3368 3.0 675 1.2980 0.36
1.2821 4.0 900 1.2802 0.3583
1.2856 5.0 1125 1.2641 0.3633
1.2974 6.0 1350 1.2496 0.3633
1.2807 7.0 1575 1.2366 0.3733
1.2428 8.0 1800 1.2247 0.3717
1.2255 9.0 2025 1.2140 0.375
1.2238 10.0 2250 1.2044 0.3717
1.1757 11.0 2475 1.1957 0.3733
1.2719 12.0 2700 1.1877 0.38
1.2029 13.0 2925 1.1807 0.38
1.2184 14.0 3150 1.1743 0.3733
1.2016 15.0 3375 1.1685 0.3717
1.1832 16.0 3600 1.1634 0.385
1.1841 17.0 3825 1.1587 0.3883
1.1122 18.0 4050 1.1544 0.395
1.1798 19.0 4275 1.1504 0.3917
1.1614 20.0 4500 1.1469 0.4
1.1973 21.0 4725 1.1435 0.4017
1.1713 22.0 4950 1.1404 0.4083
1.1334 23.0 5175 1.1376 0.4067
1.1477 24.0 5400 1.1349 0.4083
1.126 25.0 5625 1.1325 0.4067
1.1346 26.0 5850 1.1303 0.3983
1.111 27.0 6075 1.1282 0.4
1.0942 28.0 6300 1.1263 0.4067
1.1712 29.0 6525 1.1245 0.405
1.1249 30.0 6750 1.1229 0.4083
1.13 31.0 6975 1.1213 0.4067
1.1043 32.0 7200 1.1199 0.405
1.1162 33.0 7425 1.1186 0.4033
1.1041 34.0 7650 1.1174 0.4017
1.131 35.0 7875 1.1163 0.3983
1.1255 36.0 8100 1.1153 0.3983
1.0951 37.0 8325 1.1144 0.3983
1.1402 38.0 8550 1.1135 0.3967
1.0931 39.0 8775 1.1128 0.3967
1.1012 40.0 9000 1.1122 0.3967
1.1339 41.0 9225 1.1116 0.395
1.1212 42.0 9450 1.1111 0.395
1.1447 43.0 9675 1.1107 0.395
1.1467 44.0 9900 1.1104 0.395
1.1224 45.0 10125 1.1101 0.3917
1.104 46.0 10350 1.1099 0.3917
1.0801 47.0 10575 1.1098 0.39
1.1097 48.0 10800 1.1097 0.3917
1.0996 49.0 11025 1.1096 0.3917
1.1198 50.0 11250 1.1096 0.3917

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.1+cu121
  • Datasets 2.12.0
  • Tokenizers 0.13.2